摘要:
The present invention provides devices and methods for associating an implantable sling with a delivery device for delivering the sling to an anatomical location in a patient.
摘要:
A method and an apparatus according to an embodiment of the invention includes disposing a cover about a capillary used in a side-firing optical fiber. The cover can be used to protect the capillary when being inserted through an endoscope for medical treatment. In some embodiments, the cover can be a low-profile cover such as a coating made of a light-sensitive polymer or like material. At least a portion of the coating can be removed after insertion by exposing the light-sensitive material to laser energy transmitted from an optical-fiber-core end housed within the capillary. In other embodiments, the cover can be a slideable or moveable low-profile sleeve or metal cover. During insertion, the sleeve or metal cover is positioned over the capillary. After insertion, the sleeve or metal cover is retracted to expose the area to be treated to side-fired laser energy transmitted from the capillary.
摘要:
A method of designing or optimizing a column for a separation process includes the computer implemented steps of, in a digital processor, providing vapor-side and liquid-side mass transfer coefficient expressions and a mass transfer area expression relevant for a subject column, the vapor-side and liquid-side mass transfer coefficient expressions and the mass transfer area expression having been derived from defining a column average height equivalent to a theoretical plate HETP) as a mathematical relationship in which HETP is proportional to a vapor flow rate, is inversely proportional to effective packing area participating in mass transfer, has a first correction factor with respect to liquid-side mass transfer, and has a second correction factor with respect to vapor-side mass transfer. The expressions are further derived from reducing error of curve fitting HETP empirical data of various columns by using the defined HETP to obtain expressions for the vapor-side and liquid-side mass transfer coefficients and mass transfer area. The method also includes using the provided expressions to determine column height and column width configurations of the subject column, and outputting the determined column height and column width configurations of the subject column.
摘要:
A flood point for a packed column is determined by providing a data set of gas pressure drop values as a function of gas flow rate values at several liquid flow rates through a packed column, known flood point value for one liquid flow rate, setting flood point values for higher liquid flow rates at values lower than the known flood point value, and setting flood point values for lower liquid flow rates at values higher than the known flood point value, followed by expressing gas flow rates for liquid flow rates as fractions of the flood point value for each respective liquid flow rate. At a constant gas pressure drop, the method then includes calculating an average fractional flood point value for the liquid flow rates and minimizing the standard deviation between the fractional flood point value at different liquid flow rates and the calculated average fractional flood point value by iteratively resetting fractional flood point values and recalculating the average fractional flood point value for the liquid flow rates, thus resulting in determining a flood point for the packed column at any liquid flow rate, and thereby producing a plot of pressure drop as a function of fraction of flood point at any liquid flow rate, or a mathematical expression thereof that can be used in a computer-implemented column design and process modeling.
摘要:
A method of designing or optimizing a column for a separation process includes the computer implemented steps of, in a digital processor, providing vapor-side and liquid-side mass transfer coefficient expressions and a mass transfer area expression relevant for a subject column, the vapor-side and liquid-side mass transfer coefficient expressions and the mass transfer area expression having been derived from defining a column average height equivalent to a theoretical plate HETP) as a mathematical relationship in which HETP is proportional to a vapor flow rate, is inversely proportional to effective packing area participating in mass transfer, has a first correction factor with respect to liquid-side mass transfer, and has a second correction factor with respect to vapor-side mass transfer. The expressions are further derived from reducing error of curve fitting HETP empirical data of various columns by using the defined HETP to obtain expressions for the vapor-side and liquid-side mass transfer coefficients and mass transfer area. The method also includes using the provided expressions to determine column height and column width configurations of the subject column, and outputting the determined column height and column width configurations of the subject column.
摘要:
A device for sealing a cervical opening includes a support structure, and a seal coupled to the support structure, the seal having a surface for abutting against tissue next to the cervical opening, wherein the seal is tiltable relative to the support structure. A device for sealing a cervical opening includes a support structure, and a member coupled to the support structure, wherein the member is inflatable to create a seal for abutting against cervical tissue. A device for sealing a cervical opening includes a seal having a surface for contacting tissue next to the cervical opening, an opening formed on the surface of the seal, and a vacuum port, wherein the opening is in fluid communication with the vacuum port.
摘要:
The present disclosure pertains to devices and methods for diagnosis and treatment of biological tissue in which the tissue is accessed by a catheter through a working channel of an endoscope and in which the degree of extension of a distal tip of the catheter beyond a distal tip of the endoscope is controlled.
摘要:
A device for sealing a cervical opening includes a support structure, and a seal coupled to the support structure, the seal having a surface for abutting against tissue next to the cervical opening, wherein the seal is tiltable relative to the support structure. A device for sealing a cervical opening includes a support structure, and a member coupled to the support structure, wherein the member is inflatable to create a seal for abutting against cervical tissue. A device for sealing a cervical opening includes a seal having a surface for contacting tissue next to the cervical opening, an opening formed on the surface of the seal, and a vacuum port, wherein the opening is in fluid communication with the vacuum port.
摘要:
A flood point for a packed column is determined by providing a data set of gas pressure drop values as a function of gas flow rate values at several liquid flow rates through a packed column, known flood point value for one liquid flow rate, setting flood point values for higher liquid flow rates at values lower than the known flood point value, and setting flood point values for lower liquid flow rates at values higher than the known flood point value, followed by expressing gas flow rates for liquid flow rates as fractions of the flood point value for each respective liquid flow rate. At a constant gas pressure drop, the method then includes calculating an average fractional flood point value for the liquid flow rates and minimizing the standard deviation between the fractional flood point value at different liquid flow rates and the calculated average fractional flood point value by iteratively resetting fractional flood point values and recalculating the average fractional flood point value for the liquid flow rates, thus resulting in determining a flood point for the packed column at any liquid flow rate, and thereby producing a plot of pressure drop as a function of fraction of flood point at any liquid flow rate, or a mathematical expression thereof that can be used in a computer-implemented column design and process modeling.
摘要:
The present invention determines optimal positions of a variable antenna using an artificial intelligence-based genetic algorithm (GA). The GA acquires a fitness value for an individual of a genetic algorithm population by updating positions of the antenna. The population improves through an evolutionary computational process using a fitness measure based on the signal strength. At the end of the process, the system positions the antenna to the best position found by the GA. Therefore, the final position gives exceptionally clear reception for a chosen received frequency.