摘要:
The present invention relates to a novel process for forming metal matrix composite bodies by using a barrier material. Particularly, an infiltration enhancer or an infiltration enhancer precursor or an infiltrating atmosphere are in communication with a filler material or a preform, at least at some point during the process, which permits molten matrix metal to spontaneously infiltrate the filler material or preform up to the barrier material. Such spontaneous infiltration occurs without the requirement for the application of any pressure or vacuum. Accordingly, shaped metal matrix composite bodies can be produced having superior surface finish.
摘要:
The present invention relates to a novel process for forming metal matrix composite bodies by using a reactive barrier material. Particularly, an infiltration enhancer or an infiltration enhancer precursor or an infiltrating atmosphere are in communication with a filler material or a preform, at least at some point during the process, which permits molten matrix metal to spontaneously infiltrate the filler material or preform up to the reactive barrier material. Such spontaneous infiltration occurs without the requirement for the application of any pressure or vacuum. Accordingly, shaped metal matrix composite bodies can be produced having superior surface finish.
摘要:
The present invention relates to a novel method for forming metal matrix composite bodies. Particularly, a permeable mass of filler material is formed into a preform. The preform material can then be placed onto the surface of or into a matrix metal alloy, whereupon the matrix metal alloy spontaneously infiltrates the preform. After substantial complete infiltration of the preform, the preform begins to at least partially sink into the matrix metal alloy supply. The depth to which the preform may sink into the molten matrix metal alloy is controlled by utilizing a support means. The support means prevents the preform being infiltrated from submerging completely beneath the surface of the matrix metal alloy supply. The matrix metal which has infiltrated the preform is then allowed to cool, thus forming a metal matrix composite body.
摘要:
The present invention relates to a novel process for forming metal matrix composite bodies. Particularly, an infiltration enhancer and/or an infiltration enhancer precursor and/or an infiltrating atmosphere are in communication with a filler material or a preform, at least at some point during the process, which permits molten matrix metal to spontaneously infiltrate the filler material or preform. Such spontaneous infiltration occurs without the requirement for the application of any pressure or vacuum.
摘要:
The present invention relates to the formation of a macrocomposite body by spontaneously infiltrating a permeable mass of filler material or a preform with molten matrix metal and bonding the spontaneously infiltrated material to at least one second material such as a ceramic or ceramic containing body and/or a metal or metal containing body. Particularly, an infiltration enhancer and/or infiltration enhancer precursor and/or infiltrating atmosphere are in communication with a filler material or a preform, at least at some point during the process, which permits molten matrix metal to spontaneously infiltrate the filler material or preform. Moreover, prior to infiltration, the filler material or preform is placed into contact with at least a portion of a second material such that after infiltration of the filler material or preform, the infiltrated material is bonded to the second material, thereby forming a sealable electronic package.
摘要:
The present invention relates to a novel process for forming thin metal matrix composite bodies. Particularly, an infiltration enhancer and/or an infiltrating atmosphere are in communication with a filler material or preform, at least at some point during the process, which permits molten matrix metal to spontaneously infiltrate the filler material or preform. Such spontaneous infiltration occurs without the application of any pressure or vacuum. In an embodiment of the present invention, the filler material may be sprayed upon a thin sheet of matrix metal. Alternatively, the filler material may be shaped via tape casting, slip casting, etc. to provide a thin preform. In another embodiment of the present invention, a body of matrix metal may be coated with a filler material such that upon spontaneous infiltration a metal matrix composite body is produced which inversely replicates the configuration of the original body of matrix metal. In yet another embodiment of the present invention, a plurality of thin tape cast preforms which are segregated by a barrier material (e.g., graphite foil) may be infiltrated with a matrix metal during a single spontaneous infiltration process.
摘要:
The present invention relates to a novel process for forming thin metal matrix composite bodies. Particularly, an infiltration enhancer and/or an infiltrating atmosphere are in communication with a filler material or preform, at least, at some point during the process, which permits molten matrix metal to spontaneously infiltrate the filler material or preform. Such spontaneous infiltration occurs without the application of any pressure or vacuum. In an embodiment of the present invention, the filler material may be sprayed upon a thin sheet of matrix metal. Alternatively, the filler material may be shaped via tape casting, slip casting, etc. to provide a thin preform. In another embodiment of the present invention, a body of matrix metal may be coated with a filler material such that upon spontaneous infiltration a metal matrix composite body is produced which inversely replicates the configuration of the original body of matrix metal.
摘要:
The present invention relates to a novel process for forming a plurality of thin metal matrix composite bodies. Particularly, an infiltration enhancer and/or an infiltrating atmosphere are in communication with a filler material or preform, at least at some point during the process, which permits molten matrix metal to spontaneously infiltrate the plurality of filler materials or preforms. Such spontaneous infiltration occurs without the application of any pressure or vacuum and occurs in a single step. In an embodiment of the present invention, the filler material may be sprayed upon a thin sheet of matrix metal. Alternatively, the filler material may be shaped via tape casting, slip casting, etc. to provide a thin preform. In another embodiment of the present invention, a body of matrix metal may be coated with a filler material such that upon spontaneous infiltration a metal matrix composite body is produced which inversely replicates the configuration of the original body of matrix metal.
摘要:
The present invention relates to the use of a gating means in combination with a spontaneous infiltration process to produce a metal matrix composite body. Particularly, a permeable mass of filler material or a preform is spontaneously infiltrated by molten matrix metal to form a metal matrix composite body. A gating means is provided which controls or limits the areal contact between molten matrix metal and the filler material or preform. The use of a gating means provides for control of the amount of matrix metal which can contact the preform or filler material, which may result in less machining of a formed metal matrix composite body compared with a similar metal matrix composite body made without a gating mean. Moreover, the use of a gating means ameliorates the tendency of a formed metal matrix composite body to warp due to the contact between the formed composite body and matrix metal carcass. In a preferred embodiment, the gating means may comprise a porous material or a precursor to a porous material, which may optionally function as a separation facilitator. Alternatively, the separation facilitator may be provided independent of the gating means.
摘要:
This invention relates to a method for producing a self-supporting ceramic structure comprising an oxidation reaction product of a parent metal and a vapor-phase oxidant characterized by an altered microstructure attributable to the addition of one or more process modifiers relative to substantially the same oxidation reaction product produced without a process modifier.