摘要:
A vertical-cavity surface-emitting laser incorporating a supported air gap distributed Bragg reflector is disclosed. The supported air gap DBR includes a regrowth layer of material that provides mechanical support for the original material layers. The supported air gap DBR is fabricated by first growing alternating pairs of a first material and a sacrificial material over a suitable substrate. The layer pairs of the first material and sacrificial material are covered by a suitable dielectric material. The dielectric material is then selectively removed exposing regions of the first material and sacrificial material where selective regrowth of additional material is desired. The selective regrowth of the additional material provides mechanical support for the semiconductor material that remains after a selective etch removal of the sacrificial material.
摘要:
A distributed Bragg reflector and a method of fabricating the same incorporates a support for supporting the gaps against collapse. The method includes forming a plurality of alternating structure and sacrificial layers on a substrate. The structure and sacrificial layers are etched into at least one mesa protruding from the substrate. A support layer is formed on the at least one mesa leaving a portion of the structure and sacrificial layers exposed. At least a portion of at least one of the exposed sacrificial layers are etched from between the structure layers to form gaps between the structure layers.
摘要:
A distributed Bragg reflector and a method of fabricating the same incorporates a support for supporting the gaps against collapse. The method includes forming a plurality of alternating structure and sacrificial layers on a substrate. The structure and sacrificial layers are etched into at least one mesa protruding from the substrate. A support layer is formed on the at least one mesa leaving a portion of the structure and sacrificial layers exposed. At least a portion of at least one of the exposed sacrificial layers are etched from between the structure layers to form gaps between the structure layers.
摘要:
A eutectic metal layer (e.g., gold/tin) bonds a carrier wafer structure to a device wafer structure. In one example, the device wafer structure includes a silicon substrate upon which an epitaxial LED structure is disposed. A layer of silver is disposed on the epitaxial LED structure. The carrier wafer structure includes a conductive silicon substrate covered with an adhesion layer. A layer of non-reactive barrier metal (e.g., titanium) is provided between the silver layer and the eutectic metal to prevent metal from the eutectic layer (e.g., tin) from diffusing into the silver during wafer bonding. During wafer bonding, the wafer structures are pressed together and maintained at more than 280° C. for more than one minute. Use of the non-reactive barrier metal layer allows the total amount of expensive platinum used in the manufacture of a vertical blue LED manufactured on silicon to be reduced, thereby reducing LED manufacturing cost.