Abstract:
Multi-port memory having an additional control bus for passing commands between ports have individual ports that can be configured to respond to a command received from an external control bus or to a command received from the additional control bus. This facilitates various combinations of ports to vary the bandwidth or latency of the memory to facilitate tailoring performance characteristics to differing applications.
Abstract:
Memories having internal processors and methods of data communication within such memories are provided. One such memory may include a fetch unit configured to substantially control performing commands on a memory array based on the availability of banks to be accessed. The fetch unit may receive instructions including commands indicating whether data is to be read from or written to a bank, and the address of the data to be read from or written to the bank. The fetch unit may perform the commands based on the availability of the bank. In one embodiment, control logic communicates with the fetch unit when an activated bank is available. In another implementation, the fetch unit may wait for a bank to become available based on timers set to when a previous command in the activated bank has been performed.
Abstract:
Multi-port memory having an additional control bus for passing commands between ports have individual ports that can be configured to respond to a command received from an external control bus or to a command received from the additional control bus. This facilitates various combinations of ports to vary the bandwidth or latency of the memory to facilitate tailoring performance characteristics to differing applications.
Abstract:
Memory having internal processors, and methods of data communication within such a memory are provided. In one embodiment, an internal processor may concurrently access one or more banks on a memory array on a memory device via one or more buffers. The internal processor may be coupled to a buffer capable of accessing more than one bank, or coupled to more than one buffer that may each access a bank, such that data may be retrieved from and stored in different banks concurrently. Further, the memory device may be configured for communication between one or more internal processors through couplings between memory components, such as buffers coupled to each of the internal processors. Therefore, a multi-operation instruction may be performed by different internal processors, and data (such as intermediate results) from one internal processor may be transferred to another internal processor of the memory, enabling parallel execution of an instruction(s).
Abstract:
Memory having internal processors, and methods of data communication within such a memory are provided. In one embodiment, an internal processor may concurrently access one or more banks on a memory array on a memory device via one or more buffers. The internal processor may be coupled to a buffer capable of accessing more than one bank, or coupled to more than one buffer that may each access a bank, such that data may be retrieved from and stored in different banks concurrently. Further, the memory device may be configured for communication between one or more internal processors through couplings between memory components, such as buffers coupled to each of the internal processors. Therefore, a multi-operation instruction may be performed by different internal processors, and data (such as intermediate results) from one internal processor may be transferred to another internal processor of the memory, enabling parallel execution of an instruction(s).
Abstract:
Memories having internal processors and methods of data communication within such memories are provided. One such memory may include a fetch unit configured to substantially control performing commands on a memory array based on the availability of banks to be accessed. The fetch unit may receive instructions including commands indicating whether data is to be read from or written to a bank, and the address of the data to be read from or written to the bank. The fetch unit may perform the commands based on the availability of the bank. In one embodiment, control logic communicates with the fetch unit when an activated bank is available. In another implementation, the fetch unit may wait for a bank to become available based on timers set to when a previous command in the activated bank has been performed.