Abstract:
Disclosed is a process for analyzing the surface characteristics of opaque materials. The method comprises in one embodiment the use of a UV reflectometer to build a calibration matrix of data from a set of control samples and correlating a desired surface characteristic such as roughness or surface area to the set of reflectances of the control samples. The UV reflectometer is then used to measure the reflectances of a test sample of unknown surface characteristics. Reflectances are taken at a variety of angles of reflection for a variety of wavelengths, preferably between about 250 nanometers to about 400 nanometers. These reflectances are then compared against the reflectances of the calibration matrix in order to correlate the closest data in the calibration matrix. By so doing, a variety of information is thereby concluded, due to the broad spectrum of wavelengths and angles of reflection used. This includes information pertaining to the roughness and surface area, as well as other surface characteristics such as grain size, grain density, grain shape, and boundary size between the grains. Surface characteristic evaluation can be conducted in-process in a manner which is non-destructive to the test sample. The method is particularly useful for determining the capacitance of highly granular polysilicon test samples used in the construction of capacitator plates in integrated circuit technology, and can be used to determine the existence of flat smooth surfaces, and the presence of prismatic and hemispherical irregularities on flat smooth surfaces.
Abstract:
A phase shifting mask can be used with exposure lights of two different wavelengths. The depth of the phase shifting layer is calculated and fabricated such that it shifts a first exposure light about 180null and a second exposure light about 180null.
Abstract:
A method for alloying a semiconductor substrate upon which wordlines enclosed in spacers have been formed, with the substrate exposed between the wordlines. A thin sealing layer is deposited over the substrate and the wordlines, the sealing layer helping to maintain the alloy in said substrate. The alloying material employed in the substrate is hydrogen and optionally monatomic hydrogen. Alloying the substrate with monatomic hydrogen may also be done after deposition of a metal layer, or at other process steps as desired.
Abstract:
Structures and methods are provided for shielding field emitter devices from radiation. In an embodiment, a shielding layer inhibits radiation from degrading field emitter devices while exerting a predetermined force upon the field emitter devices so as to restrain from damaging the structure or affecting performance of the devices. In an embodiment, the field emitter under the protection of the shielding layer sustains structural equilibrium. In an embodiment, the field emitter sustains structural elasticity. In an embodiment, the shielding layer is comprised of tetratantalum boride, which inhibits radiation from degrading field emitter devices while exerting a predetermined force upon the field emitter devices so as to restrain from damaging the structure or affecting performance of the devices. In other embodiments, the field emitter under the protection of the tetratantalum boride layer sustains structural equilibrium or structural elasticity.
Abstract:
A method for alloying a semiconductor substrate upon which wordlines enclosed in spacers have been formed, with the substrate exposed between the wordlines. A thin sealing layer is deposited over the substrate and the wordlines, the sealing layer helping to maintain the alloy in said substrate. The alloying material employed in the substrate is hydrogen and optionally monatomic hydrogen. Alloying the substrate with monatomic hydrogen may also be done after deposition of a metal layer, or at other process steps as desired.