摘要:
A central processor unit (CPU) is connected to a system/graphics controller generally comprising a monolithic semiconductor device. The system/graphics controller is connected to an input output (IO) controller via a high-speed PCI bus. The IO controller interfaces to the system graphics controller via the high-speed PCI bus. The IO controller includes a lower speed PCI port controlled by an arbiter within the IO controller. Generally, the low speed PCI arbiter of the IO controller will interface to standard 33 MHz PCI cards. In addition, the IO controller interfaces to an external storage device, such as a hard drive, via either a standard or a proprietary bus protocol. A unified system/graphics memory which is accessed by the system/graphics controller. The unified memory contains both system data and graphics data. In a specific embodiment, two channels, CH0 and CH1 access the unified memory. Each channel is capable of accessing a portion of memory containing graphics data or a portion of memory containing system data.
摘要:
A central processor unit (CPU) is connected to a system/graphics controller generally comprising a monolithic semiconductor device. The system/graphics controller is connected to an input output (IO) controller via a high-speed PCI bus. The IO controller interfaces to the system graphics controller via the high-speed PCI bus. The IO controller includes a lower speed PCI port controlled by an arbiter within the IO controller. Generally, the low speed PCI arbiter of the IO controller will interface to standard 33 MHz PCI cards. In addition, the IO controller interfaces to an external storage device, such as a hard drive, via either a standard or a proprietary bus protocol. A unified system/graphics memory which is accessed by the system/graphics controller. The unified memory contains both system data and graphics data. In a specific embodiment, two channels, CH0 and CH1 access the unified memory. Each channel is capable of accessing a portion of memory containing graphics data or a portion of memory containing system data.
摘要:
A central processor unit (CPU) is connected to a system/graphics controller generally comprising a monolithic semiconductor device. The system/graphics controller is connected to an input output (IO) controller via a high-speed PCI bus. The IO controller interfaces to the system graphics controller via the high-speed PCI bus. The IO controller includes a lower speed PCI port controlled by an arbiter within the IO controller. Generally, the low speed PCI arbiter of the IO controller will interface to standard 33 MHz PCI cards. In addition, the IO controller interfaces to an external storage device, such as a hard drive, via either a standard or a proprietary bus protocol. A unified system/graphics memory which is accessed by the system/graphics controller. The unified memory contains both system data and graphics data. In a specific embodiment, two channels, CH0 and CH1 access the unified memory. Each channel is capable of accessing a portion of memory containing graphics data or a portion of memory containing system data.
摘要:
A central processor unit (CPU) is connected to a system/graphics controller generally comprising a monolithic semiconductor device. The system/graphics controller is connected to an input output (IO) controller via a high-speed PCI bus. The IO controller interfaces to the system graphics controller via the high-speed PCI bus. The IO controller includes a lower speed PCI port controlled by an arbiter within the IO controller. Generally, the low speed PCI arbiter of the IO controller will interface to standard 33 MHz PCI cards. In addition, the 10 controller interfaces to an external storage device, such as a hard drive, via either a standard or a proprietary bus protocol. A unified system/graphics memory which is accessed by the system/graphics controller. The unified memory contains both system data and graphics data. In a specific embodiment, two channels, CH0 and CH1 access the unified memory. Each channel is capable of accessing a portion of memory containing graphics data or a portion of memory containing system data. Therefore, it is possible for each channel to access graphics data simultaneously, system data simultaneously, or graphics and system data simultaneously. Simultaneous accesses are facilitated by assuring the physical addresses are partitioned into blocks within the unified memory, such blocks of data are adjacent blocks are accessed by different channels.
摘要:
A central processor unit (CPU) is connected to a system/graphics controller generally comprising a monolithic semiconductor device. The system/graphics controller is connected to an input output (IO) controller via a high-speed PCI bus. The IO controller interfaces to the system graphics controller via the high-speed PCI bus. The IO controller includes a lower speed PCI port controlled by an arbiter within the IO controller. Generally, the low speed PCI arbiter of the IO controller will interface to standard 33 MHz PCI cards. In addition, the IO controller interfaces to an external storage device, such as a hard drive, via either a standard or a proprietary bus protocol. A unified system/graphics memory which is accessed by the system/graphics controller. The unified memory contains both system data and graphics data. In a specific embodiment, two channels, CH0 and CH1 access the unified memory. Each channel is capable of accessing a portion of memory containing graphics data or a portion of memory containing system data. Therefore, it is possible for each channel to access graphics data simultaneously, system data simultaneously, or graphics and system data simultaneously. Simultaneous accesses are facilitated by assuring the physical addresses are partitioned into blocks within the unified memory, such blocks of data are adjacent blocks are accessed by different channels.
摘要:
A storage area network (“SAN”) includes one or more digital data processors that are coupled for communication with one or more storage devices (e.g., LUNs) over an interconnect. The improvement provides a mechanism for hierarchically displaying, e.g., on the administrator console or other output device, portions of the SAN topology. It includes a process that generates for application to the output device a plurality of graphical object that represent “segments” of the SAN and/or components of the SAN, along with the interconnections between them. The process selectively responds to operator/administrator selection of any of the graphical objects that represent a segment by regenerating the display to depict the interconnected segments and/or components that make up that segment.
摘要:
A digital data processing apparatus of the type that manages a SAN includes a first queue with entries representing tasks and a second queue with entries representing data that correspond to those tasks. Data in the second queue is grouped in accord with the task to which they correspond. A manager service updates the internal representation of the SAN (e.g., the representation of the SAN topology) by executing the tasks in the first queue one at a time, for example, atomically using a single-threaded process.
摘要:
A digital data processor of the type used, e.g., in management of a storage area network (SAN), executes a process (a “manager” process) to maintain a representation of the SAN topology or at least an attribute thereof. A graphical output device displays the SAN representation. A further process (a “user interface” process) controls the output device for purposes of displaying that representation. An interface element effects retrieval of the SAN representation, for example, in response to a request from the user interface process. It transmits that representation to the user interface process for display on the graphical output device.
摘要:
A video display apparatus and method for displaying decoded video frames from an encoded video stream utilizes a display time difference determinator that detects a frame display time difference, on a per frame basis if desired, between a refresh rate based frame display time, and a video playback frame rate display time to generate frame display time difference data. This is done on a continuous basis to detect synchronization problems between video data that is to be displayed simultaneously with non-video data on a display device such as a progressive display screen. A pixel blender blends pixel data from an adjacent frame, such as an already reconstructed previous frame or next frame, to create a temporally adjusted frame based on the determined frame display time difference data.
摘要:
A storage area network (SAN) of the type has a plurality of components including one or more digital data processors in communication with one or more storage devices via a switching fabric. An interface process, e.g., resident on a manager digital data processor, permits the operator/administrator to effect execution of at least a process residing on the manager and at least one process, such as a management application, residing on another SAN component.