摘要:
A method for reducing the capacitive coupling of an inductor on an integrated circuit chip is described. The method forms the inductor over an accumulation of dielectric layers used elsewhere in the integrated circuit. In addition two back-to-back reversed p/n junctions are formed within the silicon substrate below the inductor. The junctions are serially connected and, along with the capacitance of the dielectric layers, reduce the capacitive coupling of the inductor to the substrate by a factor of between about 2 and 20 over the that of the dielectric layers alone. The decrease in capacitance improves the performance of the inductor at high operating frequencies, for example, above1 GHz. The junctions are easily formed in a twin-well CMOS circuit by the addition of only a single additional processing step. The additional step comprises the deep implantation of phosphorous to form an n-type zone between the p-well and the substrate in the region over which the inductor is formed. The junctions are not externally biased and sustain continuous depletion regions between the inductor and the substrate.
摘要:
A method for forming a CMOS transistor gate with a self-aligned. channel implant. A semiconductor structure having a first active area is provided. A first insulating layer is formed on the semiconductor structure, and a second insulating layer is formed on the first insulating layer. The second insulating layer is patterned using a poly reverse mask and an etch selective to the first insulating layer to form a first channel implant opening, and the poly reverse mask is removed. A first channel implant mask is formed exposing the first channel implant opening. Impurity ions are implanted through the first channel implant opening to form a first threshhold adjust region and a first anti-punchthrough region. A gate layer is formed over the semiconductor structure, and the first gate layer is planarized to form a gate electrode. The second insulating layer is removed, and lightly doped source and drain regions, sidewall spacers and source and drain regions can be formed adjacent the gate electrode.
摘要:
A method for forming a CMOS transistor gate with a self-aligned channel implant. A semiconductor structure having a first active area is provided. A first insulating layer is formed on the semiconductor structure, and a second insulating layer is formed on the first insulating layer. The second insulating layer is patterned using a poly reverse mask and an etch selective to the first insulating layer to form a first channel implant opening, and the poly reverse mask is removed. A first channel implant mask is formed exposing the first channel implant opening. Impurity ions are implanted through the first channel implant opening to form a first threshold adjust region and a first anti-punchthrough region. A gate layer is formed over the semiconductor structure, and the first gate layer is planarized to form a gate electrode. The second insulating layer is removed, and lightly doped source and drain regions, sidewall spacers and source and drain regions can be formed adjacent the gate electrode.
摘要:
A method of fabricating an anti-fuse module and dual damascene interconnect structure comprises the following steps. A semiconductor structure having at least two exposed metal lines covered by a first dielectric layer is provided. A first metal line is within an anti-fuse area and a second metal line is within an interconnect area. A first metal via is formed within the first dielectric layer within the anti-fuse area with the first metal via contacting the first metal line. A SiN layer is deposited over the first dielectric layer and the first metal via. The SiN layer is patterned to form at least two openings. A first opening exposes the first metal via, and a second opening exposes a portion of the first dielectric layer above the second metal line. A fusing element layer is deposited and patterned over the patterned SiN layered structure to form a fusing element over the first metal via. Simultaneously, an anti-fuse metal line is formed over the fusing element to form an anti-fuse module within the anti-fuse area, and a dual damascene interconnect is formed over, and contacting with, the second metal line and within the interconnect area.
摘要:
A process for fabricating a MOSFET device, featuring a narrow lateral delta doping, or a narrow anti-punchthrough region, located in the center of the MOSFET channel region, has been developed. The process features formation of the narrow, anti-punchthrough region, via use of an ion implantation procedure, performed using an opening, comprised with sidewall spacers, as an implant mask. After formation of the narrow, anti-punchthrough region, the sidewall spacers are removed, and a gate insulator layer, and a polysilicon gate structure, are formed in the spacerless opening, defining a channel region wider than the narrow, anti-punchthrough region.
摘要:
A new method is provided for the creation of a resistive load in a semiconductor device whereby the semiconductor device further contains gate electrodes and a capacitor. Field isolation regions separate the active areas; a thin layer of gate oxide is created over these active regions. A first layer of poly is deposited, used for the gate electrode, for the bottom plate of the adjacent capacitor and for the resistor of high ohmic value. The gate poly is doped (in the first layer of poly); optionally the bottom plate of the capacitor can be doped. A dielectric layer is deposited for the dielectric of the capacitor; a second layer of poly is deposited, patterned and etched to form the capacitor top plate. The capacitor (dielectric and bottom plate), poly gates and the load resistor are patterned; the LDD regions for the transistors are created. The (gate, capacitor, resistor) spacers are formed, during and as part of the etch of the gate spacers a resistive spacer (called spacer since it serves to space or separate the two contact points of the resistor) is formed. The source/drain implants for the gate electrodes are performed thereby concurrently performing (self-aligned, due to the resistor spacer) implants for the contact regions of the resistor. All contacts (gate poly, source/drain and two contact points on the resistor) are salicided to achieve lower contact resistance.
摘要:
A new method is provided to create a capacitor over the surface of STI regions. The STI regions are first created in the surface of the substrate, a layer of sacrificial oxide is next blanket deposited over the substrate (thereby including the surface of the created STI regions). A depletion stop region overlying densely spaced STI regions is formed in the surface of the substrate by N+ ion implantation, N-well and P-well regions are formed surrounding the depletion stop region. An insulation layer is deposited. The sacrificial oxide and insulation layers are patterned and etched leaving the sacrificial oxide and the insulation layer in place where the capacitor is to be created. A layer of gate oxide is formed over the surface of the substrate, a layer of poly 2 is deposited for the bottom plate and the gate electrode. The conductivity of the gate electrode and the bottom plate of the capacitor is established by performing a selective N+ implant into the layer of poly 2 where the gate electrode and the bottom plate of the capacitor are to be formed. A layer of dielectric is deposited for the capacitor dielectric, a layer of in-situ doped poly 3 is deposited for the top plate of the capacitor. The layers of poly 3, dielectric and poly 2 are etched forming the capacitor structure and the gate electrode structure.
摘要:
A process for simultaneously forming a polysilicon gate structure, for a transfer gate transistor, and a polysilicon top plate, for a capacitor structure, on an underlying planar surface, has been developed. The process features the formation of a polysilicon bottom plate, for the capacitor structure, embedded in a first opening in composite insulator layer, and the formation of an active device region, for a transfer gate transistor structure, via the selective growth of an epitaxial silicon layer, in a second opening of the composite insulator layer, resulting in a planar top surface topography. The presence of this topography reduces the risk of residual polysilicon, present after patterning of the polysilicon gate structure, and of the capacitor, polysilicon top plate.
摘要:
A new method of forming liquid crystal displays has been achieved. Metal conductors are provided in an insulating layer overlying a semiconductor substrate. A first isolation layer is deposited. A first silicon nitride layer is deposited. The first silicon nitride layer is patterned to form openings for planned vias overlying the metal conductors. A second isolation layer is deposited. A second silicon nitride layer is deposited. The second silicon nitride layer is patterned to form masks overlying where dummy supports for the metal pixels are planned and to form openings to extend the planned vias. A third isolation layer is deposited. The third isolation layer is patterned to form openings for the planned metal pixels. The second isolation layer and the first isolation layer are etched through to complete the vias and the dummy supports. A metal layer is deposited filling the openings for the metal pixels, the dummy support, and the vias. The metal layer is polished down to the top surface of the third isolation layer to complete the metal pixels. A thin film passivation is deposited. A liquid crystal layer is deposited. A transparent image point electrode is formed to complete the liquid crystal display.
摘要:
A method for fabricating a metal-oxide-metal capacitor using a dual damascene process is described. A dielectric layer is provided overlying a semiconductor substrate. A dual damascene opening in the dielectric layer is filled with copper to form a copper via underlying a copper line. A first metal layer is deposited overlying the copper line and patterned to form a bottom capacitor plate contacting the copper line. A capacitor dielectric layer is deposited overlying the bottom capacitor plate. A second metal layer is deposited overlying the capacitor dielectric layer and patterned to form a top capacitor plate to complete fabrication of a metal-oxide-metal capacitor.