摘要:
Provided are exemplary methods for forming a semiconductor devices incorporating silicide layers formed at temperatures below about 700° C., such as nickel silicides, that are formed after completion of a silicide blocking layer (SBL). The formation of the SBL tends to deactivate dopant species in the gate, lightly-doped drain and/or source/drain regions. The exemplary methods include a post-SBL activation anneal either in place of or in addition to the traditional post-implant activation anneal. The use of the post-SBL anneal produces CMOS transistors having properties that reflect reactivation of sufficient dopant to overcome the SBL process effects, while allowing the use of lower temperature silicides, including nickel silicides and, in particular, nickel silicides incorporating a minor portion of an alloying metal, such as tantalum, the exhibits reduced agglomeration and improved temperature stability.
摘要:
Methods of fabricating a semiconductor device having a MOS transistor with a strained channel are provided. The method includes forming a MOS transistor at a portion of a semiconductor substrate. The MOS transistor is formed to have source/drain regions spaced apart from each other and a gate electrode located over a channel region between the source/drain regions. A stress layer is formed on the semiconductor substrate having the MOS transistor. The stress layer is then annealed to convert a physical stress of the stress layer into a tensile stress or increase a tensile stress of the stress layer.
摘要:
A method of fabricating a semiconductor device that includes dual spacers is provided. A nitrogen atmosphere may be created and maintained in a reaction chamber by supplying a nitrogen source gas. A silicon source gas and an oxygen source gas may then be supplied to the reaction chamber to deposit a silicon oxide layer on a semiconductor substrate, which may include a conductive material layer. A silicon nitride layer may then be formed on the silicon oxide layer by performing a general CVD process. Next, the silicon nitride layer may be etched until the silicon oxide layer is exposed. Because of the difference in etching selectivity between silicon nitride and silicon oxide, portions of the silicon nitride layer may remain on sidewalls of the conductive material layer. As a result, dual spacers formed of a silicon oxide layer and a silicon nitride layer may be formed on the sidewalls.
摘要:
A method of fabricating a semiconductor device that includes dual spacers is provided. A nitrogen atmosphere may be created and maintained in a reaction chamber by supplying a nitrogen source gas. A silicon source gas and an oxygen source gas may then be supplied to the reaction chamber to deposit a silicon oxide layer on a semiconductor substrate, which may include a conductive material layer. A silicon nitride layer may then be formed on the silicon oxide layer by performing a general CVD process. Next, the silicon nitride layer may be etched until the silicon oxide layer is exposed. Because of the difference in etching selectivity between silicon nitride and silicon oxide, portions of the silicon nitride layer may remain on sidewalls of the conductive material layer. As a result, dual spacers formed of a silicon oxide layer and a silicon nitride layer may be formed on the sidewalls.
摘要:
A method of fabricating a semiconductor device that includes dual spacers is provided. A nitrogen atmosphere may be created and maintained in a reaction chamber by supplying a nitrogen source gas. A silicon source gas and an oxygen source gas may then be supplied to the reaction chamber to deposit a silicon oxide layer on a semiconductor substrate, which may include a conductive material layer. A silicon nitride layer may then be formed on the silicon oxide layer by performing a general CVD process. Next, the silicon nitride layer may be etched until the silicon oxide layer is exposed. Because of the difference in etching selectivity between silicon nitride and silicon oxide, portions of the silicon nitride layer may remain on sidewalls of the conductive material layer. As a result, dual spacers formed of a silicon oxide layer and a silicon nitride layer may be formed on the sidewalls.
摘要:
A method of fabricating a semiconductor device having a metal gate pattern is provided in which capping layers are used to control the relative oxidation rates of portions of the metal gate pattern during a oxidation process. The capping layer may be a multilayer structure and may be etched to form insulating spacers on the sidewalls of the metal gate pattern. The capping layer(s) allow the use of a selective oxidation process, which may be a wet oxidation process utilizing partial pressures of both H2O and H2 in an H2-rich atmosphere, to oxidize portions of the substrate and metal gate pattern while suppressing the oxidation of metal layers that may be included in the metal gate pattern. This allows etch damage to the silicon substrate and edges of the metal gate pattern to be reduced while substantially maintaining the original thickness of the gate insulating layer and the conductivity of the metal layer(s).
摘要:
Methods of forming a semiconductor device having a metal gate electrode include sequentially forming a gate insulator, a gate polysilicon layer and a metal-gate layer on a semiconductor substrate. The metal-gate layer and the gate polysilicon layer are sequentially patterned to form a gate pattern comprising a stacked gate polysilicon pattern and a metal-gate pattern. An oxidation barrier layer is formed to cover at least a portion of a sidewall of the metal-gate pattern.
摘要:
A method of fabricating a semiconductor device having a metal gate pattern is provided in which capping layers are used to control the relative oxidation rates of portions of the metal gate pattern during a oxidation process. The capping layer may be a multilayer structure and may be etched to form insulating spacers on the sidewalls of the metal gate pattern. The capping layer(s) allow the use of a selective oxidation process, which may be a wet oxidation process utilizing partial pressures of both H2O and H2 in an H2-rich atmosphere, to oxidize portions of the substrate and metal gate pattern while suppressing the oxidation of metal layers that may be included in the metal gate pattern. This allows etch damage to the silicon substrate and edges of the metal gate pattern to be reduced while substantially maintaining the original thickness of the gate insulating layer and the conductivity of the metal layer(s).
摘要:
Methods of forming a semiconductor device having a metal gate electrode include sequentially forming a gate insulator, a gate polysilicon layer and a metal-gate layer on a semiconductor substrate. The metal-gate layer and the gate polysilicon layer are sequentially patterned to form a gate pattern comprising a stacked gate polysilicon pattern and a metal-gate pattern. An oxidation barrier layer is formed to cover at least a portion of a sidewall of the metal-gate pattern.
摘要:
A method of fabricating a semiconductor device having a metal gate pattern is provided in which capping layers are used to control the relative oxidation rates of portions of the metal gate pattern during a oxidation process. The capping layer may be a multilayer structure and may be etched to form insulating spacers on the sidewalls of the metal gate pattern. The capping layer(s) allow the use of a selective oxidation process, which may be a wet oxidation process utilizing partial pressures of both H2O and H2 in an H2-rich atmosphere, to oxidize portions of the substrate and metal gate pattern while suppressing the oxidation of metal layers that may be included in the metal gate pattern. This allows etch damage to the silicon substrate and edges of the metal gate pattern to be reduced while substantially maintaining the original thickness of the gate insulating layer and the conductivity of the metal layer(s).