摘要:
An integrated circuit device and method for manufacturing the integrated circuit device is disclosed. The disclosed method provides improved control over a surface proximity and tip depth of integrated circuit devices. An exemplary integrated circuit device achieved by the method has a surface proximity of about 1 nm to about 3 nm and a tip depth of about 5 nm to about 10 nm. The integrated circuit device having such surface proximity and tip depth includes an epi source feature and an epi drain feature defined by a first facet and a second facet of a substrate in a first direction, such as a {111} crystallographic plane of the substrate, and a third facet of the substrate in a second direction, such as a { 100} crystallographic plane of the substrate.
摘要:
An integrated circuit device and method for manufacturing the integrated circuit device is disclosed. The disclosed method provides improved control over a surface proximity and tip depth of integrated circuit device. In an embodiment, the method achieves improved control by forming a lightly doped source and drain (LDD) region that acts as an etch stop. The LDD region may act as an etch stop during an etching process implemented to form a recess in the substrate that defines a source and drain region of the device.
摘要:
An integrated circuit device is disclosed. The disclosed device provides improved control over a surface proximity and tip depth of integrated circuit devices. An exemplary integrated circuit device disclosed herein has a surface proximity of about 1 nm to about 3 nm and a tip depth of about 5 nm to about 10 nm. The integrated circuit device having such surface proximity and tip depth includes an epi source feature and an epi drain feature defined by a first facet and a second facet of a substrate in a first direction, such as a {111} crystallographic plane of the substrate, and a third facet of the substrate in a second direction, such as a {100} crystallographic plane of the substrate.
摘要:
An integrated circuit device and method for manufacturing the integrated circuit device is disclosed. The disclosed method provides improved control over a surface proximity and tip depth of integrated circuit device. In an embodiment, the method achieves improved control by forming a lightly doped source and drain (LDD) region that acts as an etch stop. The LDD region may act as an etch stop during an etching process implemented to form a recess in the substrate that defines a source and drain region of the device.
摘要:
An integrated circuit device and method for manufacturing the integrated circuit device is disclosed. The disclosed method provides improved control over a surface proximity and tip depth of integrated circuit device. In an embodiment, the method achieves improved control by forming a doped region and a lightly doped source and drain (LDD) region in a source and drain region of the device. The doped region is implanted with a dopant type opposite the LDD region.
摘要:
An integrated circuit device and method for manufacturing the integrated circuit device is disclosed. The disclosed method provides improved control over a surface proximity and tip depth of integrated circuit device. In an embodiment, the method achieves improved control by forming a doped region and a lightly doped source and drain (LDD) region in a source and drain region of the device. The doped region is implanted with a dopant type opposite the LDD region.
摘要:
An integrated circuit device and method for manufacturing the integrated circuit device is disclosed. The disclosed method provides improved control over a surface proximity and tip depth of integrated circuit device. In an embodiment, the method achieves improved control by forming a doped region and a lightly doped source and drain (LDD) region in a source and drain region of the device. The doped region is implanted with a dopant type opposite the LDD region.
摘要:
An integrated circuit device and method for manufacturing the integrated circuit device is disclosed. The disclosed method provides improved control over a surface proximity and tip depth of integrated circuit device. In an embodiment, the method achieves improved control by forming a doped region and a lightly doped source and drain (LDD) region in a source and drain region of the device. The doped region is implanted with a dopant type opposite the LDD region.
摘要:
A method for fabricating an integrated device is disclosed. In an embodiment, a hard mask layer with a limited thickness is formed over a gate electrode layer. A treatment is provided to the hard mask layer to make the hard mask layer more resistant to a wet etch solution. Then, a patterning is provided on the treated hard mask layer and the gate electrode to from a gate structure.
摘要:
A method for fabricating a semiconductor device is disclosed. The method includes forming at least one material layer over a substrate; performing an end-cut patterning process to form an end-cut pattern overlying the at least one material layer; transferring the end-cut pattern to the at least one material layer; performing a line-cut patterning process after the end-cut patterning process to form a line-cut pattern overlying the at least one material layer; and transferring the line-cut pattern to the at least one material layer.