摘要:
A nickel electrode for an alkaline storage battery in which an active material mainly containing nickel hydroxide is applied to a porous sintered nickel substrate, wherein a layer containing at least one hydroxide of an element selected from a group consisting of Ca, Sr, Sc, Y, lanthanoid, and Bi is formed on a surface of the active material thus applied to the sintered nickel substrate, or between the sintered nickel substrate and the active material.
摘要:
A nickel electrode for an alkaline storage battery in which an active material mainly containing nickel hydroxide is applied to a porous sintered nickel substrate, wherein a layer containing at least one hydroxide of an element selected from a group consisting of Ca, Sr, Sc, Y, lanthanoid, and Bi is formed on a surface of the active material thus applied to the sintered nickel substrate, or between the sintered nickel substrate and the active material.
摘要:
A nickel electrode for an alkaline storage battery in which an active material mainly containing nickel hydroxide is applied to a porous sintered nickel substrate, wherein a layer containing at least one hydroxide of an element selected from a group consisting of Ca, Sr, Sc, Y, lanthanoid, and Bi is formed on a surface of the active material thus applied to the sintered nickel substrate, or between the sintered nickel substrate and the active material.
摘要:
In an alkali storage battery comprising a positive electrode, a negative electrode and an alkali electrolyte in a battery can, .alpha.-nickel hydroxide containing manganese is used as a cathode active material for the positive electrode, and the difference between a charging potential and an oxygen gas evolution potential at the positive electrode is increased, to suppress oxygen gas evolution during the charging, and the volume percentage of the cathode active material and an anode active material is set to not less than 75% in the battery can, to obtain a large battery capacity.
摘要:
An object of the present invention is to provide an effective hydrogen-absorbing alloy activation process which can enhance the electrochemical activity of a hydrogen-absorbing alloy and to provide a hydrogen-absorbing alloy electrode which, when used in a battery, ensures an excellent initial inner pressure characteristic, low-temperature discharge characteristic, high-rate discharge characteristic and cycle characteristic. In accordance with the present invention, a hydrogen-absorbing alloy electrode production process is provided which comprises an alloy activation treatment step of immersing a hydrogen-absorbing alloy in a strong acid treatment solution containing metal ions and, in the course of the pH rise of the acid treatment solution, adding an alkali to the acid treatment solution to promote the pH rise of the acid treatment solution.
摘要:
In the present invention, a hydrogen absorbing alloy treated upon immersed in an acid solution containing at least a quinone compound, a hydrogen absorbing alloy immersed in water to which at least a quinone compound is added, or a hydrogen absorbing alloy treated upon being immersed in an acid solution containing at least a quinone compound and then immersed in water to which at least a quinone compound is added is used for a hydrogen absorbing alloy electrode, and the hydrogen absorbing alloy electrode is used as a negative electrode of an alkali secondary battery.
摘要:
A method for manufacturing a lithium battery is provided. The battery includes electrodes formed of a layer of an active material, the active material being capable of occluding and discharging lithium electrochemically, provided on the surface of a current collector, electrode external terminals for providing electricity to the outside of the battery, and an electrode tab joined at an end thereof to a surface of said current collector and at another end thereof to an electrode external terminal. The electrode tab has a roughened surface at the end joined to the current collector, and the roughened surface is welded to the surface of said current collector. The roughened surface is produced by chemical etching, abrasion by an abrasive, abrasion by ultrasonic waves or by blasting with an abrasive.
摘要:
A lithium battery and method for manufacturing the lithium battery are provided. The battery includes electrodes formed of a layer of an active material, the active material being capable of occluding and discharging lithium electrochemically, provided on the surface of a current collector, electrode external terminals for providing electricity to the outside of the battery, and an electrode tab joined at an end thereof to a surface of said current collector and at another end thereof to an electrode external terminal. The electrode tab has a roughened surface at the end joined to the current collector, and the roughened surface is welded to the surface of said current collector. The roughened surface is produced by chemical etching, abrasion by an abrasive, abrasion by ultrasonic waves or by blasting with an abrasive.
摘要:
A method of manufacturing a cylindrical non-aqueous electrolyte secondary cell according to the present invention comprises a first step of forming a lead-attaching area on which an active material layer is not formed, in a positive electrode wherein a positive electrode active material layer is formed on both sides of the positive electrode current collector and a negative electrode wherein a negative electrode active material layer is formed on both sides of the negative electrode current collector, and winding the positive electrode and the negative electrode with disposing a separator therebetween so that the lead-attaching areas are protruded from the edges of the separator, and a second step of disposing a lead at an end part of the lead-attaching area with interposing a metal plate having a multiplicity of holes, and thereafter laser-welding the lead and the metal plate and the lead-attaching area by applying a laser beam with a spot diameter larger than a hole diameter of the metal plate. According to the present invention, it is feasible to laser-weld a lead to a lead-attaching area without fear of a short circuit resulting from the fusion in an electrode assembly caused by a laser beam.
摘要:
A hydrogen-absorbing alloy electrode for metal hydride alkaline batteries is obtained by coating or filling a collector with a hydrogen-absorbing alloy powder consisting essentially of spherical particles and/or nearly spherical particles and then sintering the powder, the powder having an average particle diameter of 30 to 70 .mu.m and containing 5 to 30% by volume of particles having a diameter of at least 2 times the average diameter and 10 to 40% by volume of particles having a diameter of not more than 1/2 of the average diameter. This electrode can give metal hydride alkaline batteries having excellent high-rate discharge characteristics and a long life.