Abstract:
This disclosure provides transgenic plants having enhanced traits such as increased yield, increased nitrogen use efficiency and enhanced drought tolerance; propagules, progeny and field crops of such transgenic plants; and methods of making and using such transgenic plants. This disclosure also provides methods of producing hybrid seed from such transgenic plants, growing such seed and selecting progeny plants with enhanced traits. Also disclosed are transgenic plants with altered phenotypes which are useful for screening and selecting transgenic events for the desired enhanced trait.
Abstract:
A method is provided for transforming monocotyledonous plants to express DNA sequences of interest from plant cell plastids. The method allows the transformation of monocot plant tissue with heterologous DNA constructs. The invention also provides for monocot cells in which the plastids contain heterologous DNA constructs.
Abstract:
A method is provided for transforming monocotyledonous plants to express DNA sequences of interest from plant cell plastids. The method allows the transformation of monocot plant tissue with heterologous DNA constructs. The invention also provides for monocot cells in which the plastids contain heterologous DNA constructs.
Abstract:
The disclosure provides nucleic acid constructs encoding novel chimeric peptides that are useful for nuclear and chloroplast expression of active nitrogenase components including dinitrogenase reductase and dinitrogenase, in plant cells. The disclosure thus provides nucleic acid constructs encoding the chimeric proteins, as well as plant expression constructs comprising the same for expression and/or targeting to the nucleus, plastids, or mitochondria of plant cells. The disclosure also provides methods of use for the novel chimeric peptides that function to provide active dinitrogenase reductase, dinitrogenase, and thus nitrogenase, expressed in plant cells, and plants comprising such nucleic acid constructs.
Abstract:
A method is provided for transforming monocotyledonous plants to express DNA sequences of interest from plant cell plastids. The method allows the transformation of monocot plant tissue with heterologous DNA constructs. The invention also provides for monocot cells in which the plastids contain heterologous DNA constructs.
Abstract:
The disclosure provides nucleic acid constructs encoding novel chimeric peptides that are useful for nuclear and chloroplast expression of active nitrogenase components including dinitrogenase reductase and dinitrogenase, in plant cells. The disclosure thus provides nucleic acid constructs encoding the chimeric proteins, as well as plant expression constructs comprising the same for expression and/or targeting to the nucleus, plastids, or mitochondria of plant cells. The disclosure also provides methods of use for the novel chimeric peptides that function to provide active dinitrogenase reductase, dinitrogenase, and thus nitrogenase, expressed in plant cells, and plants comprising such nucleic acid constructs.
Abstract:
A method is provided for transforming monocotyledonous plants to express DNA sequences of interest from plant cell plastids. The method allows the transformation of monocot plant tissue with heterologous DNA constructs. The invention also provides for monocot cells in which the plastids contain heterologous DNA constructs.