Abstract:
The present invention provides methods for improving competency of plant cells for bacterial-mediated transformation comprising contacting the plant cells with an effective amount of polyethylene glycol (PEG) for a period of time prior to transformation. The ability to store and maintain competent plant cells for transformation and tissue culture allows more efficient planning and execution of large-scale experiments by providing flexibility of peak production hours, or during unplanned disruptions in the production process. These methods are useful in preserving the viability of plant cells in various storage conditions, thus improving their competency for transformation and tissue culture.
Abstract:
The present invention provides methods for improving competency of plant cells for bacterial-mediated transformation comprising contacting the plant cells with an effective amount of polyethylene glycol (PEG) for a period of time prior to transformation. The ability to store and maintain competent plant cells for transformation and tissue culture allows more efficient planning and execution of large-scale experiments by providing flexibility of peak production hours, or during unplanned disruptions in the production process. These methods are useful in preserving the viability of plant cells in various storage conditions, thus improving their competency for transformation and tissue culture.
Abstract:
The present invention provides methods and devices for the rapid isolation of monocot plant embryos suitable for transformation or tissue culture. The invention includes mechanical devices for substantially isolating plant embryos for use as transformable explants. Media suitable for isolating plant embryos and methods for their preparation are also provided.
Abstract:
The present invention discloses and claims methods and devices for the rapid mechanical isolation of monocot plant tissues suitable for transformation or tissue culture. The invention includes mechanical devices for substantially isolating target plant tissues for use as transformable explants, and propagation of transgenic plants and plant tissues.
Abstract:
The present invention discloses and claims methods and devices for the rapid mechanical isolation of monocot plant tissues suitable for transformation or tissue culture. The invention includes mechanical devices for substantially isolating target plant tissues for use as transformable explants, and propagation of transgenic plants and plant tissues.
Abstract:
The present invention provides methods and devices for the rapid isolation of monocot plant embryos suitable for transformation or tissue culture. The invention includes mechanical devices for substantially isolating plant embryos for use as transformable explants. Media suitable for isolating plant embryos and methods for their preparation are also provided.
Abstract:
The present invention provides methods and devices for the rapid isolation of monocot plant embryos suitable for transformation or tissue culture. The invention includes mechanical devices for substantially isolating plant embryos for use as transformable explants. Media suitable for isolating plant embryos and methods for their preparation are also provided.
Abstract:
The present invention discloses and claims methods and devices for the rapid mechanical isolation of monocot plant tissues suitable for transformation or tissue culture. The invention includes mechanical devices for substantially isolating target plant tissues for use as transformable explants, and propagation of transgenic plants and plant tissues.
Abstract:
The present invention provides methods and devices for the rapid isolation of monocot plant embryos suitable for transformation or tissue culture. The invention includes mechanical devices for substantially isolating plant embryos for use as transformable explants. Media suitable for isolating plant embryos and methods for their preparation are also provided.