Abstract:
External electrodes, electrically connected to exposed portions of internal electrodes, are arranged on end surfaces of a ceramic main body of a laminated ceramic capacitor. Alloy layers of a metal contained in internal electrodes, and a metal contained in external electrodes, are arranged at the boundaries between external electrodes, and the ceramic main body and internal electrodes. Plating layers are provided on surfaces of external electrodes. A ceramic electronic component having a reduced ESR is thus provided.
Abstract:
A ceramic electronic component with a carrier substrate includes a ceramic electronic component including first and second principal surfaces, first and second end surfaces, first and second side surfaces, and at least two external electrodes on an outer surface of the ceramic electronic component, and a carrier substrate attached to the second principal surface of the ceramic electronic component, wherein a first adhesive layer is on the first principal surface of the ceramic electronic component.
Abstract:
A multilayer ceramic electronic component includes a multilayer body and external electrodes provided on opposing end surfaces of the multilayer body. Each external electrode includes an underlying electrode layer including metal components and ceramic components, and plating layers on the underlying electrode layer. A metal of the plating layer on the underlying electrode layer diffuses into the underlying electrode layer to extend from a surface layer of the underlying electrode layer to an interface of the multilayer body, and exists at an interface where the metal components included in the underlying electrode layer are in contact with each other, an interface where the metal component and the ceramic component included in the underlying electrode layer are in contact with each other, and an interface between the metal component included in the underlying electrode layer and the multilayer body.
Abstract:
A multilayer ceramic electronic component includes a multilayer body and an external electrode on each of both end surfaces of the multilayer body. The external electrode includes an underlying electrode layer and a plating layer that is disposed on the underlying electrode layer. The underlying electrode layer includes Ni as a first metal component, Sn as a second metal component, and a ceramic material, and includes an alloy portion that is provided around the ceramic material and includes an alloyed Ni defining the first metal component and an alloyed Sn defining the second metal component.
Abstract:
A multilayer ceramic electronic component includes a multilayer body and an external electrode on each of both end surfaces of the multilayer body. The external electrode includes an underlying electrode layer and a plating layer that is disposed on the underlying electrode layer. The underlying electrode layer includes Ni as a first metal component, Sn as a second metal component, and a ceramic material, and includes an alloy portion that is provided around the ceramic material and includes an alloyed Ni defining the first metal component and an alloyed Sn defining the second metal component.
Abstract:
A multilayer ceramic capacitor includes a capacitive element including ceramic layers and internal electrodes, and external electrodes on the capacitive element. The external electrodes include a Ni underlying electrode layer mainly made of Ni, a Cu plating electrode layer, and at least one second plating electrode layer. The Cu plating electrode layer includes a Ni diffused Cu plating electrode layer on a side closer to the Ni underlying electrode layer and including Ni diffused therein and a non-Ni diffused Cu plating electrode layer on a side closer to the second plating electrode layer and not including Ni diffused therein. The Cu plating electrode layer has a thickness of about 3 μm or more and about 12 μm or less and the non-Ni diffused Cu plating electrode layer has a thickness of about 0.5 μm or more.
Abstract:
A multilayer ceramic electronic component includes a multilayer body and an external electrode on each of both end surfaces of the multilayer body. The external electrode includes an underlying electrode layer and a plating layer that is disposed on the underlying electrode layer. The underlying electrode layer includes Ni as a first metal component, Sn as a second metal component, and a ceramic material, and includes an alloy portion that is provided around the ceramic material and includes an alloyed Ni defining the first metal component and an alloyed Sn defining the second metal component.
Abstract:
A multilayer ceramic electronic component includes a multilayer body and external electrodes provided on opposing end surfaces of the multilayer body. Each external electrode includes an underlying electrode layer including metal components and ceramic components, and plating layers on the underlying electrode layer. A metal of the plating layer on the underlying electrode layer diffuses into the underlying electrode layer, and exists at an interface where the metal components included in the underlying electrode layer are in contact with each other and an interface where the metal component and the ceramic component included in the underlying electrode layer are in contact with each other.
Abstract:
A multilayer ceramic capacitor includes a ceramic body including ceramic layers, first internal electrodes, and second internal electrodes laminated in a height direction, a first external electrode on at least part of a first end surface and on part of a first main surface and not on a second main surface, the first external electrode being electrically connected to the first internal electrodes, a second external electrode on at least part of a second end surface and on part of the first main surface and is not on the second main surface, the second external electrode being electrically connected to the second internal electrodes, at least two penetration portions penetrating the ceramic body between the first and second main surfaces, and a reinforcing layer on at least part of the second main surface, the reinforcing layer covering the at least two penetration portions exposed from the ceramic body.
Abstract:
A multilayer ceramic capacitor includes a capacitive element including a stack of ceramic layers and internal electrodes, and external electrodes on a surface of the capacitive element. Each of the external electrodes includes a base electrode layer on the surface of the capacitive element and a Cu-plated electrode layer on a surface of the base electrode layer and including an edge portion facing the surface of the capacitive element. Sn is provided between the edge portion of the Cu-plated electrode layer and the surface of the capacitive element. On a surface of the Cu-plated electrode layer, at least one second plated electrode layer including an edge portion facing the surface of the capacitive element is provided.