Abstract:
A process for producing a monolithic ceramic electronic component, which includes: providing a ceramic slurry, a conductive paste, and a ceramic paste; forming a plurality of composite structures each comprising a ceramic green sheet produced by shaping the ceramic slurry, internal circuit element films formed by applying the conductive paste partially onto a main surface of the ceramic green sheet so as to provide step-like sections, and a ceramic green layer which compensates for spaces defined by the step-like sections, the ceramic green layer being formed by applying the ceramic paste onto the region on the main surface of the sheet on which the element films are not formed, so as to substantially compensate for the spaces; forming a green laminate by laminating the composite structures; and firing the green laminate, wherein the ceramic paste contains ceramic powder, an organic solvent, and an organic binder. A monolithic ceramic electronic component produced through the process; a ceramic paste; and a production process for the ceramic paste are also disclosed.
Abstract:
A ceramic slurry composition is obtained by mixing a ceramic raw material powder, a water-soluble acrylic binder and water, wherein the water-soluble acrylic binder has a weight average molecular weight of from about 10,000 to 500,000, and has an inertial square radius of not more than about 100 nm in water. The ceramic slurry composition can have a low viscosity as well as good dispersion characteristics for the ceramic raw material powder, good flow characteristics and good form characteristics, and can provide ceramic green sheets having a high density and excellent drying characteristics, by decreasing the solution viscosity, without decreasing the molecular weight of the water-soluble acrylic binder containing a hydrophobic component.
Abstract:
A process for producing a monolithic ceramic electronic component, which includes: providing a ceramic slurry, a conductive paste and a ceramic paste; forming a plurality of composite structures each comprising a ceramic green sheet produced by shaping the ceramic slurry, internal circuit element films formed by applying the conductive paste partially onto a main surface of the ceramic green sheet so as to provide step-like sections, and a ceramic green layer which compensates for spaces defined by the step-like sections, the ceramic green layer being formed by applying the ceramic paste onto the region on the main surface of the sheet on which the element films are not formed so as to substantially compensate for the spaces; forming a green laminate by laminating the composite structures; and firing the green laminate. A monolithic ceramic electronic component which is produced through the process; a ceramic paste; and a production process for the paste are also disclosed.