Abstract:
An object of the present invention is to provide a novel electrochromic device (ECD). Disclosed is an electrochromic device (ECD) comprising two metal-complex-based electrochromic thin films individually acting as a working electrode and a counter electrode; (i) one of the two metal-complex-based electrochromic thin films being a film of a cathodically coloring metallo-supramolecular polymer comprising at least one organic ligand having a plurality of metal coordination positions and a metal ion of at least one transition metal and/or lanthanoid metal with the at least one organic ligand and the metal ion being arranged alternately, and the other of the two metal-complex-based electrochromic thin films being a film of an anodically coloring metal hexacyanoferrate (MHCF) represented by the formula: M(II)3[Fe(III)CN6]2 (where M=Fe, Ni or Zn), and (ii) the electrochromic device having a first conducting substrate; the film of the cathodically coloring metallo-supramolecular polymer; an electrolyte; the film of the anodically coloring metal hexacyanoferrate (MHCF); and a second conducting substrate being arranged in this order.
Abstract:
The present invention relates to a composite having exceptional heat resistance and durability that exhibits quick response characteristics when used in an electrochromic device; an electrochromic device in which the composite is used; and a method for producing said composite and device. This composite contains an organic/metallic hybrid polymer that contains an organic ligand and a metal ion coordinated to the organic ligand, and an ionic liquid. The organic/metallic hybrid polymer forms ionic bonds with the ionic liquid. This electrochromic device comprises a first electrode, an electrochromic layer containing the composite, an electrolyte layer, and a second electrode.
Abstract:
The present invention relates to an organic/heterometallic hybrid polymer including a plurality of organic metal complexes and a plurality of transition metals, the organic/heterometallic hybrid polymer, whereinthe plurality of organic metal complexes are linked in a linear manner by sandwiching each of the plurality of transition metals therebetween,the organic metal complexes include two ligands each having a terpyridyl group and one connector having Ru(dppe)2 and two ethynylene groups, and the two ligands are linked by the connector, so that a nitrogen atom at position 1′ of the terpyridyl group is directed toward the terminal side of the molecule of the organic metal complex, andthe terpyridyl groups of at least two different organic metal complexes of the plurality of organic metal complexes are bound to one of the transition metals through a coordinate bond, thereby linking the plurality of organic metal complexes while sandwiching the plurality of transition metals alternately therebetween.
Abstract:
A proton conductive film, a method of producing the proton conductive film, and a highly sensitive humidity sensor are provided. The proton conductivity (room temperature, 95% RH) of the proton conductive film is 3×10−21 Scm−1 or more, and the proton conductive film is usable under a neutral-solvent atmosphere. A highly proton conductive polymer film made of an organic/metallic hybrid polymer film including: one or more metal ions selected from a group consisting of Fe ion, Co ion, Ru ion, Zn ion, and Ni ion; and bis(terpyridyl)benzene, is used.
Abstract:
The present invention relates to a composite having exceptional heat resistance and durability that exhibits quick response characteristics when used in an electrochromic device; an electrochromic device in which the composite is used; and a method for producing said composite and device. This composite contains an organic/metallic hybrid polymer that contains an organic ligand and a metal ion coordinated to the organic ligand, and an ionic liquid. The organic/metallic hybrid polymer forms ionic bonds with the ionic liquid. This electrochromic device comprises a first electrode, an electrochromic layer containing the composite, an electrolyte layer, and a second electrode.
Abstract:
The present invention relates to an organic/heterometallic hybrid polymer including a plurality of organometal complexes and a plurality of transition metals, the organic/heterometallic hybrid polymer, wherein the plurality of organometal complexes are linked in a linear manner by sandwiching each of the plurality of transition metals therebetween, the organometal complexes include two ligands each having a terpyridyl group and one connector having Ru(dppe)2 and two ethynylene groups, and the two ligands are linked by the connector, so that a nitrogen atom at position 1′ of the terpyridyl group is directed toward the terminal side of the molecule of the organometal complex, and the terpyridyl groups of at least two different organometal complexes of the plurality of organometal complexes are bound to one of the transition metals through a coordinate bond, thereby linking the plurality of organometal complexes while sandwiching the plurality of transition metals alternately therebetween.
Abstract:
The problem to be solved by the present invention is to provide an electrochromic gel which is excellent in flexibility and which is stretchable, a method for producing the gel, a method for controlling electronic printing and erasing, and a stretchable display. The problem is solved by using an electrochromic gel obtained by laminating an electrolyte-containing gel layer consisting only of an electrolyte-containing gel and an organic-metallic hybrid polymer-containing layer obtained by containing an organic-metallic hybrid polymer in the electrolyte-containing gel.
Abstract:
The present invention addresses a first problem of providing a polymer that has electrochromic characteristics, and that can form a sheet which seems more transparent when applied to an electrochromic element and is decolored. The present invention for solving the problem is a polymer obtained by forming a complex between, and binding together, compound A represented by formula 1: BP1-L1-BP2 and at least one specific metal ion selected from the group consisting of first metal ions having a coordination number of 4, second metal ions having a coordination number of 6, and third metal ions having a coordination number of 4 and 6. In the formula, L1 represents a single bond or a divalent group, and BP1 and BP2 may be identical or different from each other and each independently represent a bipyridine derivative.
Abstract:
Disclosed is a redox-complementary electrochromic device exhibiting black-to-transmissive switching, wherein the device comprises an electrochromic layer and a redox-active material layer sandwiched between a transparent first electrode and a transparent secondary electrode, the electrochromic layer comprising an electrochromic Co-based metallo-supramolecular polymer represented by the formula (I), and the redox active material being capable of reacting with the electrochromic material to change the electrochromic material from black state into colorless transmissive state, where in the formula (I), X represents a counter anion, R represents a single bond or a spacer comprising a carbon atom and a hydrogen atom, each of R1 to R4 independently represents a hydrogen atom or a substituent group, and n represents an integer of from 2 to 5000, which indicates a degree of polymerization.
Abstract:
The problem to be solved by the present invention is to provide an electrochromic gel which is excellent in flexibility and which is stretchable, a method for producing the gel, a method for controlling electronic printing and erasing, and a stretchable display. The problem is solved by using an electrochromic gel obtained by laminating an electrolyte-containing gel layer consisting only of an electrolyte-containing gel and an organic-metallic hybrid polymer-containing layer obtained by containing an organic-metallic hybrid polymer in the electrolyte-containing gel.