Abstract:
To provide a charging power control method which charges a storage battery and in which an “limit value” and a “requested power” are set in advance, the charging power control method including: a step of measuring an effective value of power used by the storage battery being charged; a step to determining whether or not the measured effective value monotonically decreases; a step of, when the effective value monotonically decreases, resetting the limit value and the value of the requested power to, for example, a value equal to the effective value; a step of storing the reset limit value and the reset requested power; a step of, thereafter, continuing the charging of the storage battery at the reset limit value; a step of performing the limited charging during charging of the storage battery; and a step of, after finish of the limited charging, resuming charging by setting the limit value to the stored value of the requested power.
Abstract:
An object of the present invention is to effectively use an electric power without impairing the convenience for a user. A power management system 1 has a plurality of quick chargers 350 to which the electric power is supplied from the common electric power system, and a power management server 310 which manages electric power supplies to the quick chargers 350 from the electric power system. The quick charger 350 charges an electric vehicle with a constant-current/constant-voltage charging method. The power management server 310 has a charging-phase identification unit 312 configured to identify whether the quick charger 350 in a charging operation among the battery chargers 350 is in a constant-current charging phase or in a constant-voltage charging phase, and a power-allocation determination unit 313 configured to allocate an electric power to at least one of quick chargers 350 in the constant-current charging phase of the charging operation, from another quick charger 350 among the quick chargers 350 in the charging operation.
Abstract:
A distributed electricity storage system (1) includes a plurality of electricity storage apparatuses (110) which are connected to the same distribution line (50), a determination unit (310) that determines excess or deficit in the distribution line (50), an acquisition unit (320) that acquires, with respect to each of the plurality of electricity storage apparatuses, state information indicating a state of an electricity storage apparatus and direction information indicating an operating direction of a charging direction or a discharging direction, and a selection unit (330) that selects an electricity storage apparatus to be controlled in charging and discharging operations from the plurality of electricity storage apparatuses, using a determination result of the excess or deficient power, the state information, and the direction information.
Abstract:
A charging state management method includes A1: information gathering step of gathering at least data of available power (for example, 100 kW) in a charging facility and data of minimum charging power (for example, 10 kW) for charging one electric vehicle, and A2: determining step of determining whether a standby-state charger is operable with the minimum charging power (for example, 10 kW) or more, assuming a case in which another electric vehicle is further added during charging of one or more electric vehicles, based on at least a value obtained by multiplying the number of all vehicles including the added vehicle (for example, n+1) by the minimum charging power (for example, 10 kW) and a value of the available power (for example, 100 kW).
Abstract:
A battery control system that communicates by way of a communication network with a plurality of batteries that are connected to an electric power system includes a communication characteristics detection unit that, for each of the plurality of batteries, detects characteristics of communication paths between the batteries and the battery control system within the communication network. The battery control system includes a selection unit which selects, from among the plurality of batteries, each battery that has characteristics of communication paths within a predetermined communication characteristics range, as a regulating battery that is to be used for regulating electric power of the electric power system. The battery control system includes a control unit that supplies operation instructions that instructs the regulating batteries that were selected in the selection unit to perform a charging or discharging operation.
Abstract:
The present rapid charging method for electric vehicles includes the steps of A1: measuring charging power for an electric vehicle that is being charged, A2: determining whether the measured charging power decreases monotonically for a certain period of time, A3: determining whether a difference between a maximum value of the measured charging power and a value of the current charging power is equal to or higher than a certain value, A4: calculating a state of charge of the electric vehicle and determining whether a current state of charge is equal to or less than a predetermined value, and A5: stopping temporarily and restarting a charging if (a) the charging power does not decrease monotonically for the certain period of time, (b) the difference between the maximum value of the charging power and the current value of the charging power is equal to or higher than the certain value, and (c) the current state of charge is equal to or less than the predetermined value.
Abstract:
To optimize balance of supply and demand by making a demand amount of electric power as the whole of a plurality of charging apparatuses fluctuate while reflecting an idea of a manager of the charging apparatuses. A power supply/demand adjustment system 1 has a store information management server 220 configured to store information relating to power utilization at stores 300, power management servers 310 provided for each of the stores 300 and configured to manage operation of quick chargers 350, or the like, and an operation management server 210. The operation management server 210 receives a demand response, replaces the received demand response with a commit type demand response set for each of the stores 300 by utilizing at least one piece of information stored in the store information management server 220, and transmits the replaced commit type demand response to the power management server 310 of the respective stores 300.