Abstract:
A broad band diversity antenna system comprises a system of log periodic antennas (LPA) and dipole antennas. Two LPAs form a balanced dipole by feeding the back ends of the LPA. The feed is improved by the addition of a balun to ensure RF balance. Because a dipole only requires narrow bandwidth, a simple balun is constructed from coax cable or a transmission line, thus providing low cost construction.
Abstract:
Systems and methods for enabling a wireless local area network (WLAN) client to communicate simultaneously over more than one band at a time are described, where each client has at least one radio that is operational in each supported band. Load balancing based on traffic requirements optimizes the use of the multiple bands.
Abstract:
Systems and methods for enabling a WLAN client to communicate simultaneously over more than one band at a time are described, where each client has at least one radio that is operational in each supported band. Load balancing based on traffic requirements optimizes the use of the multiple bands.
Abstract:
Disclosed are improved antenna structures, systems, and methods of manufacturing. In an embodiment, low-cost internal 2G/5G antennas have flat metal dipole construction, which can include a stiffener. External embodiments include quad dipole antenna structures, with broadside or corner arrays. Isolated multi-band center or end-fed dipole antennas can include single-sided PCB or metal-only structures, for operation with at least two distinct frequencies, and can provide RF isolation, such as with an RF trap or a Balun system. Embodiments of non-DC path or pass-through dual band antennas feature trap structures, along with discrete or distributed matching, and can provide a DC feed path for LEDs. Low profile and flat vertically polarized omni-directional antennas, such as for operation at 915 MHz, include an open slot driven cavity. Stacked 2G/5G antenna structures provide axial symmetry between quadrants. Improved construction methods and antenna structures include enhanced thin metal components and low cost, crimp-only construction methods.
Abstract:
Antenna designs are disclosed that exhibit both high bandwidth and efficiency. A first aspect of the invention concerns the form factor of the antenna; a second aspect of the invention concerns the ease with which the antenna is manufactured; and a third aspect concerns the superior performance exhibits by the antenna across a large bandwidth.
Abstract:
Systems and methods for enabling a wireless local area network (WLAN) client to communicate simultaneously over more than one band at a time are described, where each client has at least one radio that is operational in each supported band. Load balancing based on traffic requirements optimizes the use of the multiple bands.
Abstract:
Systems and methods for enabling a WLAN client to communicate simultaneously over more than one band at a time are described, where each client has at least one radio that is operational in each supported band. Load balancing based on traffic requirements optimizes the use of the multiple bands.
Abstract:
Disclosed are improved antenna structures, systems, and methods of manufacturing. In an embodiment, low-cost internal 2G/5G antennas have flat metal dipole construction, which can include a stiffener. External embodiments include quad dipole antenna structures, with broadside or corner arrays. Isolated multi-band center or end-fed dipole antennas can include single-sided PCB or metal-only structures, for operation with at least two distinct frequencies, and can provide RF isolation, such as with an RF trap or a Balun system. Embodiments of non-DC path or pass-through dual band antennas feature trap structures, along with discrete or distributed matching, and can provide a DC feed path for LEDs. Low profile and flat vertically polarized omni-directional antennas, such as for operation at 915 MHz, include an open slot driven cavity. Stacked 2G/5G antenna structures provide axial symmetry between quadrants. Improved construction methods and antenna structures include enhanced thin metal components and low cost, crimp-only construction methods.
Abstract:
Various embodiments disclose systems and methods for employing a Sub1G signal (e.g. a signal in the range of approximately 500 Mhz or 800 mHz) for use with internal and/or external components of various user devices. The Sub1G region may provide a path loss advantage over traditional 2.4 and 5 Ghz systems because of the lower frequency in free-space path loss model. Sub1G may also present less interference compared to 2.4 GHz (e.g., better QoS for applications such as VOIP, Gaining, etc.). In some of the disclosed embodiments, Sub1G may be employed using current 2.4G or 5G Wireless LAN chipset with RF Up/Down Converters. In some embodiments, the Sub1G approach may be used to create a Long Range Bridge, Long Range Extender, Long Range Client, Long Range Hotspot, etc.
Abstract:
Systems and methods for enabling a WLAN client to communicate simultaneously over more than one band at a time are described, where each client has at least one radio that is operational in each supported band. Load balancing based on traffic requirements optimizes the use of the multiple bands.