摘要:
Porous body data in which position information and type information are correlated is reference to take a curved surface solid including a parent virtual sphere and child virtual spheres as a virtual curved surface solid, and place multiple virtual curved surface solids so as to fill in space pixels with curved surface solid pixels occupied by virtual curved surface solids. Repeating this process, by placing multiple virtual curved surface solids within space in a porous body, the microstructure of the porous body is analyzed precisely. As for analysis, deriving of in-plane uniformity index γx, spatial uniformity index γ, pressure drop P, flow-through velocity T, and equivalent diameter d, for example, and acceptability determination based on derived values thereof, is performed.
摘要:
A CPU of an analysis apparatus performs a fluid analysis and derives transient distribution information that represents an accumulation distribution of a particulate layer on an inflow-side inner circumferential surface of a honeycomb structure at a time point after a short time interval Δt (step S130). The CPU then repeatedly performs a fluid analysis by taking into account the transient distribution information derived previous time to repeatedly derive transient distribution information (steps S130 to S150) and then derives post-transient-analysis distribution information that represents the accumulation distribution of the particulate layer at a later time point (step S160).
摘要:
Method of identifying a valid flow path includes: performing fluid analysis of a porous body, which is ought to have inflow surface and outflow surface, based on structure data representing a 3-dimentional structure of the porous body to generate data indicating at least a pressure distribution of a fluid in a flow path in the porous body; and identifying a valid flow path that allows the fluid to flow from the inflow surface to the outflow surface based on a gradient of pressure values along a flow direction of the fluid in the flow path.
摘要:
Object information representing a honeycomb structure with a plurality of meshes is obtained, and an inner-wall-surface heat transfer coefficient hs, i.e., a heat transfer coefficient between an inner wall surface of a cell and a fluid, is derived as follows. First, one of the meshes as a target for derivation of the inner-wall-surface heat transfer coefficient hs is set (S200), and a dimensionless coordinate X* is derived on the basis of position information (X-coordinate) of the set mesh and fluid state information (S210). An inner-wall-surface dimensionless heat transfer coefficient Nus corresponding to the derived dimensionless coordinate X* is then derived on the basis of the inner-wall-surface dimensionless correspondence information (S220 to S250). The inner-wall-surface heat transfer coefficient hs in the mesh set as the derivation target is then derived on the basis of the derived inner-wall-surface dimensionless heat transfer coefficient Nus (S260).
摘要:
In a porous body, a surface layer thickness Ts takes a relatively small value satisfying P≥0.54 Ts (formula (1)), the surface layer thickness Ts being derived by a microstructure analysis using the porous-body data that is prepared through three-dimensional scanning of a region including a surface (inflow plane 61) of the porous body. Here, P denotes a porosity [%] of the porous body, and 0%
摘要:
First inner gas holes 134a and first outer gas holes 144a of a gas sensor are formed so that the following conditions are satisfied: a first-inner-hole count Nin≧3, 0