摘要:
A honeycomb structure is provided with a pair of electrode sections disposed on the side face of the honeycomb structure section. The honeycomb structure section has an electrical resistivity of 1 to 200 Ωcm, and each of the pair of electrode sections is formed into a band-like shape extending in a cell extension direction of the honeycomb structure section. In a cross section perpendicular to the cell extension direction, one electrode section of the pair of electrode sections is disposed across the center O of the honeycomb structure section from the other electrode section of the pair of electrode sections. In a cross section perpendicular to the cell extension direction, 0.5 times the central angle of each of the electrode sections is 15 to 65°.
摘要:
A honeycomb structural body 20 comprises a porous partition portion 22 which forms a plurality of cells each functioning as a flow path of a fluid, and in the partition portion 22, the average pore diameter is 10 to 20 μm, and a wet area rate R (=S/V) which is the rate of a wet area S of pores to a volume V of the partition portion 22 is 0.000239 μm−1 or more.
摘要:
A ceramic body is heated to a predetermined temperature by using a furnace, and a cooling gas is ejected toward a first end face of the ceramic body so that the first end face of the ceramic body is cooled. At this time, the temperature of the first end face of the ceramic body is measured by a radiation thermometer provided on the same side from which the cooling gas is ejected, and the internal temperature is measured by a thermocouple provided in the ceramic body. Thereafter, a thermal shock resistance test in which actual use conditions are simulated is performed by obtaining the temperature gradient of the ceramic body from measurement results of the temperature of the first end face of the ceramic body and the internal temperature and checking the absence or presence of cracks that occurs to the ceramic body.
摘要:
A holding jig has a tubular jig base member, and a tubular expansion/contraction member disposed on an inner peripheral surface side of the tubular jig base member. Both end sides of the tubular expansion/contraction member are fixed to both end sides of the tubular jig base member along the whole periphery. A configuration of an inner peripheral surface of the tubular expansion/contraction member is smaller than a surface configuration of a pillar-like body (a honeycomb structure) to be held. On the other hand, a configuration of an inner peripheral surface of the tubular jig base member is larger than the surface configuration of the pillar-like body (the honeycomb structure) to be held.
摘要:
Plural of virtual curved surface solids, each of which is a curved surface solid formed by a combination of plural of virtual spheres, is placed so as to fill in space voxels, referring to porous-body data in which positional information is associated with voxel-type information (step S100). Information regarding a flow rate for each space voxel when a fluid passes through a porous body is derived by executing a fluid analysis based on the porous-body data (step S110). A flow-rate-weighted mean diameter Ru, which is a weighted average obtained by weighting an equivalent diameter R′i for each virtual curved surface solid with a volume Vi and an average flow rate Ui for each virtual curved surface solid, is derived based an information regarding the virtual curved surface solids and information regarding the flow rate for each space voxel (step S120).
摘要:
Porous body data in which position information and type information are correlated is reference to take a curved surface solid including a parent virtual sphere and child virtual spheres as a virtual curved surface solid, and place multiple virtual curved surface solids so as to fill in space pixels with curved surface solid pixels occupied by virtual curved surface solids. Repeating this process, by placing multiple virtual curved surface solids within space in a porous body, the microstructure of the porous body is analyzed precisely. As for analysis, deriving of in-plane uniformity index γx, spatial uniformity index γ, pressure drop P, flow-through velocity T, and equivalent diameter d, for example, and acceptability determination based on derived values thereof, is performed.
摘要:
In a porous body, a surface layer thickness Ts takes a relatively small value satisfying P≥0.54 Ts (formula (1)), the surface layer thickness Ts being derived by a microstructure analysis using the porous-body data that is prepared through three-dimensional scanning of a region including a surface (inflow plane 61) of the porous body. Here, P denotes a porosity [%] of the porous body, and 0%
摘要:
A method for manufacturing a porous body includes a structure forming step that is repeatedly performed a plurality of times and includes: a pore-forming material placing step of placing a pore-forming material 50 for forming pores in the porous body; an aggregate placing step of placing aggregate particles 51 which are part of raw materials of the porous body; a binder placing step of placing binder particles 52 which are part of the raw materials of the porous body; and a binding step of heat-fusing at least part of the placed binder particles 52 to bind aggregate particles 51 together.
摘要:
A honeycomb catalyst body includes a tubular honeycomb base material having porous partition walls to define and form a plurality of cells extending as through channels of a fluid from one end surface from which the fluid flows in to the other end surface from which the fluid flows out, and a catalyst loaded onto the partition walls. In the honeycomb base material, at least one slit which is open in a side surface of the honeycomb base material is formed, and a width of the slit is from 1.0 to 10.0 mm.