Abstract:
A method for producing β-sialon fluorescent material having excellent emission intensity is provided. The method for producing β-sialon fluorescent material includes providing a composition comprising silicon nitride that contains aluminium, an oxygen atom, and europium, heat treating the composition, contacting the heat-treated composition with a basic substance, and washing the composition, which has been contacted with the basic substance, with an acidic liquid medium.
Abstract:
Provided is a method of producing a β-sialon fluorescent material having a high light emission intensity and an excellent light emission luminance. The method includes preparing a calcined product having a composition of β-sialon containing an activating element; grinding the calcined product to obtain a ground product; and heat-treating the ground product to obtain a heat-treated product. A specific surface area of the ground product is 0.2 m2/g or more.
Abstract:
A fluorescent material is provided that has improved luminance and can generate fluorescence by excitation light in wider wavelength range. A fluorescent material represented by a general formula LaxCeySi6N8+x+y, wherein 2.0≤x≤3.5, 0
Abstract:
Provided is a method of producing a β-sialon fluorescent material having a high light emission intensity and an excellent light emission luminance. The method includes preparing a calcined product having a composition of β-sialon containing an activating element; grinding the calcined product to obtain a ground product; and heat-treating the ground product to obtain a heat-treated product. A specific surface area of the ground product is 0.2 m2/g or more.
Abstract:
A phosphor, which is represented by the general formula containing M, Ce, Pr, Si, and N, is provided. M is at least one element selected from the group consisting of La, Y, Tb and Lu. A molar ratio of M is greater than 2.0 and smaller than 3.5. A molar ratio of Ce is greater than 0 and smaller than 1.0. A molar ratio of Pr is greater than 0 and smaller than 0.05. A molar ratio of N is greater than 10 and smaller than 12, under the condition that a molar ratio of Si is set to 6. The phosphor further contains 10 to 10,000 ppm of fluorine.
Abstract:
A phosphor is provided which is represented by the general formula MxCeyPrzSi6N8+w. M is at least one element selected from the group consisting of La, Y, Tb and Lu. And x, y, z and w satisfy 2.0
Abstract:
Provided a method of producing a β-sialon fluorescent material having excellent emission intensity. The method includes providing a first composition containing aluminum, an oxygen atom, and a europium-containing silicon nitride, heat treating the first composition, contacting the heat-treated composition and a basic substance to obtain a second composition, and contacting the second composition resulting from contacting the heat-treated composition with the basic substance and an acidic liquid medium containing an acidic substance.
Abstract:
A method for producing a β-sialon fluorescent material is provided. The method includes heat-treating a mixture containing an aluminum compound, a first europium compound, and silicon nitride to obtain a first heat-treated product; and heat-treating the first heat-treated product with a second europium compound in a rare gas atmosphere to obtain a second heat-treated product.
Abstract:
A phosphor is provided which is represented by the general formula MxCeySi6-zBzN8+w. M is at least one element selected from the group consisting of La, Y, Tb and Lu. And w, x, y, and z satisfy 2.0
Abstract:
Provided a method of producing a β-sialon fluorescent material having excellent emission intensity. The method includes providing a first composition containing aluminum, an oxygen atom, and a europium-containing silicon nitride, heat treating the first composition, contacting the heat-treated composition and a basic substance to obtain a second composition, and contacting the second composition resulting from contacting the heat-treated composition with the basic substance and an acidic liquid medium containing an acidic substance.