Abstract:
Transmitting devices used in an optical access system in which a plurality of the transmitting devices transmit an optical burst signal to a receiving device by time division multiple access, the transmitting devices each including an arithmetic processing unit, the arithmetic processing unit including: a data signal transmission instruction unit, the a data signal transmission instruction unit that outputs a first instruction for controlling transmission processing of a data signal on the basis of a requester's instruction; an optical signal control instruction unit that outputs a second instruction for controlling output processing of an optical signal on the basis of the requester's instruction; and an instruction output adjustment unit that adjusts a timing at which the first instruction is output and a timing at which the second instruction is output.
Abstract:
A self-diagnostic method for PON protection system, in which optical switch-related failure can be previously inspected, and a PON protection system. A circuit is configured while an optical switch is switched so that signal light from an ONU is input to both a normal system OSU and a redundancy system OSU of an optical access network including the ONU, and there are conducted a circuit configuration test in which the signal light to the normal system OSU and the signal light to the redundancy system OSU are monitored for a predetermined period of time, and when the signal light to one of the OSUs and the signal light to the other do not correspond to each other, it is judged as abnormality and an open state test in which an optical switch is opened so that the signal light from the ONU is input to only the normal system OSU of the optical access network including the ONU, a circuit of the redundancy system OSU and the ONU is brought into an open state, the signal light to redundancy system OSU is monitored for a predetermined time of period, and when the signal light to the redundancy system exists, it is judged as abnormality.
Abstract:
In an optical transmission system including a plurality of optical transmitting units and a relay device, the plurality of optical transmitting units include a frequency modulation conversion unit that converts an input signal into a frequency modulation signal through frequency modulation conversion processing, a multiplexing unit that multiplexes monitoring signals with different frequencies with the frequency modulation signal, and an optical modulation unit that converts the frequency modulation signal that is an electric signal in which the monitoring signals are multiplexed into optical signals having different wavelengths, and the relay device includes a photoelectric conversion unit that acquires a combined signal obtained by combining optical signals having different wavelengths from each other and converts the combined signal into an electric signal, and a measuring unit that measures transmission quality of the plurality of monitoring signals included in the electric signal.
Abstract:
A communication device including a first communication device and a plurality of second communication devices in an optical access system in which a first communication device and the plurality of second communication devices perform communications with each other under a time division multiple access scheme includes an Ethernet controller configured to implement the communications as Ethernet (registered trademark) communications, and a link failure processing unit configured to output, in response to reception of a link failure notification for notifying occurrence of a link failure in the communications from the first communication device, a termination instruction to terminate data transmission when the communication device is performing the data transmission to the first communication device, and a start instruction to start the data transmission after recovery from the link failure when the communication device is not performing the data transmission to the first communication device.
Abstract:
An optical line terminal is provided with: an absorption unit that acquires first information of a type and a format that are dependent on a communication scheme and that converts the acquired first information into second information of a type and a format that are common to mutually different communication schemes; and a bandwidth allocation unit that determines bandwidth allocation of an upstream signal allocated to an optical network unit on the basis of the second information.
Abstract:
A normal system OSU, a redundancy system OSU, an optical switch, a concentration switch, and a controller which detects a command input by operation control and performs control according to the command are provided, and in such a state that the controller detects a redundancy system switching command indicating that the normal system OSU is switched to the redundancy system OSU, the controller induces the concentration switch to change a storage destination of a down signal, instructs the normal system OSU which is the switching source OSU to stop transmission of a transmission permission message, instructs the optical switch to switch a path after receiving remaining data processing completion notifications from the concentration switch and the normal system OSU which is the switching source OSU, writes accumulated information about the normal system OSU, which is the switching source OSU, in the redundancy system OSU, and notifies the concentration switch of completion of switching, whereby a down signal is transmitted from the concentration switch.
Abstract:
An apparatus includes a reception processing unit configured to output a frequency division multiplexed signal obtained from a transmission signal transmitted over the wired communication network, an output control unit configured to output, in a case that apparatus identifying data matches signal specifying data, a frequency band specifying data indicating a frequency band corresponding to the signal specifying data, the apparatus identifying data being for requesting signal quality degradation, and the signal specifying data specifying a carrier signal requesting signal quality degradation among a plurality of carrier signals included in the frequency division multiplexed signal, a disturbing signal generation unit configured to generate a disturbing signal in a frequency band corresponding to the frequency band specifying data output by the output control unit, and a multiplexing unit configured to multiplex the frequency division multiplexed signal and the disturbing signal to output.
Abstract:
An optical transmission apparatus includes an input unit, a demultiplexing unit, a measurement unit, and a switching unit. The input unit inputs a first multiplexed signal and a second multiplexed signal each obtained by multiplexing a plurality of optical signals having different wavelengths. The demultiplexing unit demultiplexes the first multiplexed signal and the second multiplexed signal by wavelength. The measurement unit measures qualities of a plurality of optical signals obtained by demultiplexing the first multiplexed signal and qualities of a plurality of optical signals obtained by demultiplexing the second multiplexed signal. The switching unit performs switching between the first multiplexed signal and the second multiplexed signal to be output to a subsequent stage based on a result of measurement by the measurement unit.
Abstract:
An optical transmission system includes: first and second optical transmitting units for respectively transmitting first and second optical signals that are obtained, respectively, as a result of first and second frequency-multiplexed multi-channel signals being converted by means of FM batch conversion; a carrier monitoring function unit for monitoring each carrier signal included in the optical signals; an output adjustment unit for adjusting signal intensities of the optical signals and outputting the optical signals; a multiplexer for outputting a multiplexed signal of the optical signals; an amplifier for amplifying the multiplexed signal; and first and second optical receiving units for receiving the respective optical signals included in the amplified multiplexed signal. The output adjustment unit adjusts the respective signal intensities of the optical signals such that the signal intensity at each optical receiving unit is larger than or equal to a predetermined value. The carrier monitoring function unit updates the predetermined values based on a minimum optical sensitivity that is calculated based on the amount of frequency deviation of each carrier signal included in the optical signals.
Abstract:
An optical transmission apparatus of an embodiment is an apparatus for redundantly transmitting a multiplexed signal obtained by multiplexing N (N is an integer of 2 or greater) optical signals having different wavelengths, the apparatus including: a first demultiplexing unit to which a first multiplexed signal is input, the first demultiplexing unit configured to demultiplex the input first multiplexed signal into the N optical signals; N first detection units to which the N optical signals demultiplexed by the first demultiplexing unit are respectively input, each of the N first detection units configured to detect presence or absence of deterioration of a corresponding input optical signals of the input optical signals based on a signal level of the corresponding input optical signal; a second demultiplexing unit to which a second multiplexed signal is input, the second demultiplexing unit configured to demultiplex the input second multiplexed signal into the N optical signals; N second detection units to which the N optical signals demultiplexed by the second demultiplexing unit are respectively input, each of the N second detection units configured to detect presence or absence of deterioration of a corresponding input optical signal of the input optical signals based on a signal level of the corresponding input optical signal; and a selection unit configured to select, based on the detection result of presence or absence of deterioration of each of the optical signals by the first detection units and the second detection units, N optical signals having different wavelengths from either the optical signals demultiplexed by the first demultiplexing unit or the optical signals demultiplexed by the second demultiplexing unit.