Abstract:
A vehicle steering control apparatus and vehicle steering control method make it possible to suppress a steering state of a steering operation element from being different from the driver's intention, in starting the driving source. A backup clutch, which is switchable between a release state where a torque transmission path is mechanically decoupled and an engagement state where the torque transmission path is mechanically coupled, is set to the engagement state in starting the engine. When the steering torque detected after the engine starts becomes equal to or lower than a clutch release start torque, the backup clutch in the engagement state is switched to the release state.
Abstract:
To suppress a voltage drop of a battery in an idle reduction state, a vehicle includes an idle reduction function of stopping the idling of the engine and restarting the engine when the vehicle starts moving. Then, a steering-by-wire control processing is performed to disengage a clutch and to control driving of turning motors. When the idling of the engine is stopped by the idle reduction function, a disengaged state of the clutch is maintained and the driving of the turning motors is restricted.
Abstract:
A vehicle steering control apparatus and vehicle steering control method make it possible to suppress a steering state of a steering operation element from being different from the driver's intention, in starting the driving source. A backup clutch, which is switchable between a release state where a torque transmission path is mechanically decoupled and an engagement state where the torque transmission path is mechanically coupled, is set to the engagement state in starting the engine. When the steering torque detected after the engine starts becomes equal to or lower than a clutch release start torque, the backup clutch in the engagement state is switched to the release state.
Abstract:
To improve silence in a vehicle interior space in an idle reduction state, a vehicle includes an idle reduction function of stopping the idling of the engine and restarting the engine when the vehicle starts moving. When the engine is in a working state, the clutch is disengaged and control of driving of a turning actuator is performed, and when the engine is in a stop state, the clutch is engaged and the control of driving of the turning actuator is stopped. Furthermore, a disconnected state of the clutch is maintained when idling of the engine is stopped by the idle reduction function.
Abstract:
To achieve a fail-safe fully utilizing the advantage of plural motors, a second controller performs a one-motor SBW mode when at least one of a first turning controller, a first turning motor and a torque sensor malfunctions in a state where the first turning controller and the second turning controller perform a two-motor SBW mode. Furthermore, the first controller performs a one-motor EPS mode when at least one of the second turning controller and the second turning motor malfunctions in the state where the first turning controller and the second turning controller perform a two-motor SBW mode.