摘要:
Embodiments of fuel cells and their membrane electrode assemblies are provided, as well as methods for preparing the membrane electrode assemblies. One embodiment of a membrane electrode assembly comprises an anode catalyst layer, a cathode catalyst layer, a polymer electrolyte membrane between the anode catalyst layer and the cathode catalyst layer and a gas barrier layer between the polymer electrolyte membrane and the anode catalyst layer. The gas barrier layer comprises a proton conductive material and is configured to prevent crossover of gas through the polymer electrolyte membrane to the cathode catalyst layer.
摘要:
Systems and methods for electrochemical surface area retention of fuel cell catalyst using hydrogen crossover are disclosed. One fuel cell system embodiment comprises a fuel cell including an anode having a fuel gas supply and a cathode having an air supply and a controller. The controller is configured to detect a high voltage condition in the fuel cell and increase hydrogen partial pressure in the cathode when the high voltage condition is detected.
摘要:
Electrocatalysts having non-corrosive, non-carbon support particles are provided as well as the method of making the electrocatalysts and the non-corrosive, non-carbon support particles. Embodiments of the non-corrosive, non-carbon support particle consists essentially of titanium dioxide and ruthenium dioxide. The electrocatalyst can be used in fuel cells, for example.
摘要:
Non-corrosive, non-carbon metal oxide support particles are formed with pre-shaped, templated vacancies. Electrocatalysts, membrane electrode assemblies and fuel cells can be produced with the templated non-corrosive, non-carbon metal oxide support particles.
摘要:
Electrocatalysts having non-corrosive, non-carbon support particles are provided as well as the method of making the electrocatalysts and the non-corrosive, non-carbon support particles. Embodiments of the non-corrosive, non-carbon support particle consists essentially of titanium dioxide and ruthenium dioxide. The electrocatalyst can be used in fuel cells, for example.
摘要:
Electrocatalysts having non-corrosive, non-carbon support particles are provided as well as the method of making the electrocatalysts and the non-corrosive, non-carbon support particles. Embodiments of the non-corrosive, non-carbon support particle consists essentially of titanium dioxide and ruthenium dioxide. The electrocatalyst can be used in fuel cells, for example.
摘要:
Methods and apparatus are provided for discharging a Li—S battery having at least one battery unit comprising a lithium-containing anode and a sulfur-containing cathode with an electrolyte layer there between. One method comprises electrochemically surface treating the sulfur-containing cathode during discharge of the battery. A method of electrochemically surface treating a cathode of a lithium-sulfide battery comprises applying at least one oxidative voltage pulse during a pulse application period while the lithium-sulfur battery discharges and controlling pulse characteristics during the pulse application period, the pulse characteristics configured to affect a morphology of lithium sulfide forming on the sulfur-containing cathode during discharge.
摘要:
Provided are methods and apparatus for charging a lithium sulfur (Li—S) battery. The Li—S battery has at least one unit cell comprising a lithium-containing anode and a sulfur-containing cathode with an electrolyte layer there between. One method provides controlled application of voltage pulses at the beginning of the charging process. An application period is initiated after a discharge cycle of the Li—S battery is complete. During the application period, voltage pulses are provided to the Li—S battery. The voltage pulses are less than a constant current charging voltage. Constant current charging is initiated after the application period has elapsed.
摘要:
Electrocatalysts having non-corrosive, non-carbon support particles are provided as well as the method of making the electrocatalysts and the non-corrosive, non-carbon support particles. Embodiments of the non-corrosive, non-carbon support particle consists essentially of titanium dioxide and ruthenium dioxide. Active catalyst particles of a platinum alloy are deposited onto each non-carbon composite support particle. The electrocatalyst can be used in fuel cells, for example.
摘要:
Electrocatalysts having non-corrosive, non-carbon support particles are provided as well as the method of making the electrocatalysts and the non-corrosive, non-carbon support particles. Embodiments of the non-corrosive, non-carbon support particle consists essentially of titanium dioxide and ruthenium dioxide. The electrocatalyst can be used in fuel cells, for example.