Abstract:
A method for screening materials may include obtaining materials from a database. The method may include screening the materials to obtain a one or more screened materials. The method may include generating a training set based on the screened materials, validated experimental data, or both. The method may include establishing a machine learning screening model based on the training set, one or more target parameters, or both. The method may include applying the machine learning screening model to uncharacterized materials. The method may include outputting one or more materials having characteristics matching the target parameters.
Abstract:
An anode active material for a lithium-ion battery cell comprises low density silicon. The anode active material is provided in an anode for a lithium-ion battery. Also disclosed are methods of making the anode active material.
Abstract:
A cathode for a lithium-sulfur battery cell includes positive active material comprising sulfur and carbon coated onto an electrode substrate and gold nanoparticles affixed to the positive active material and configured to direct growth and deposition of lithium sulfide. A lithium ion battery cell, battery stack and method of making the cathodes are also provided.
Abstract:
Electrocatalysts having non-corrosive, non-carbon support particles are provided as well as the method of making the electrocatalysts and the non-corrosive, non-carbon support particles. Embodiments of the non-corrosive, non-carbon support particle consists essentially of titanium dioxide and ruthenium dioxide. The electrocatalyst can be used in fuel cells, for example.
Abstract:
Provided are methods and apparatus for charging a lithium sulfur (Li—S) battery. The Li—S battery has at least one unit cell comprising a lithium-containing anode and a sulfur-containing cathode with an electrolyte layer there between. One method provides controlled application of voltage pulses at the beginning of the charging process. An application period is initiated after a discharge cycle of the Li—S battery is complete. During the application period, voltage pulses are provided to the Li—S battery. The voltage pulses are less than a constant current charging voltage. Constant current charging is initiated after the application period has elapsed.
Abstract:
Methods of preparing fuel cells and fuel cell electrodes having catalyst with high density catalyst support are provided. One method of fabricating a fuel cell electrode comprises adjusting the gravimetric ratio of ionomer to catalyst support based on the density of the support material to optimize ionomer performance.
Abstract:
An anode active material for a lithium-ion battery cell comprises low density silicon. The anode active material is provided in an anode for a lithium-ion battery. Also disclosed are methods of making the anode active material.
Abstract:
Methods for the rapid synthesis of catalyst are provided, as well as catalyst formed from such methods. One method of the rapid synthesis of catalyst comprises forming a homogenous solution comprising a precious metal precursor and a catalyst substrate, reducing the precious metal precursor to precious metal nanoparticles, and depositing the precious metal nanoparticles onto the catalyst substrate to form catalyst particles. The reducing and depositing steps comprise controlling a rate of increase in temperature of the solution with microwave irradiation until the solution is a predetermined temperature and maintaining the solution at the predetermined temperature with microwave irradiation. The method further comprises detecting completion of the reduction and deposition and ceasing microwave irradiation upon detection.
Abstract:
A regenerated cathode active material comprises a core material comprising lithium and a transition metal oxide, the core material having a surface, wherein the core material is a recycled cathode active material. At least two different lithium-ion conducting species are on the surface of the core material, and the at least two different lithium-ion conducting species are selected from AlF3, Li3PO4, and a lithium metal oxide. Another regenerated cathode active material for use in a lithium-ion battery comprises a core material comprising a transition metal oxide and lithium, the core material having a surface, and multiple lithium-ion conducting species on the surface, wherein the core material is a recycled cathode active material.
Abstract:
A regenerated cathode active material comprises a core material comprising lithium and a transition metal oxide, the core material having a surface, wherein the core material is a recycled cathode active material that has been re-lithiated. At least two different lithium-ion conducting species are on the surface of the core material, and the at least two different lithium-ion conducting species are selected from AlF3, Li3PO4, and a lithium metal oxide. Another regenerated cathode active material for use in a lithium-ion battery comprises a core material comprising a transition metal oxide and lithium, the core material having a surface, and multiple lithium-ion conducting species on the surface, wherein the core material is a recycled cathode active material that has been re-lithiated.