Abstract:
A tile coalescer within a graphics processing pipeline coalesces coverage data into tiles. The coverage data indicates, for a set of XY positions, whether a graphics primitive covers those XY positions. The tile indicates, for a larger set of XY positions, whether one or more graphics primitives cover those XY positions. The tile coalescer includes coverage data in the tile only once for each XY position, thereby allowing the API ordering of the graphics primitives covering each XY position to be preserved. The tile is then distributed to a set of streaming multiprocessors for shading and blending operations. The different streaming multiprocessors execute thread groups to process the tile. In doing so, those thread groups may perform read-modify-write operations with data stored in memory. Each such thread group is scheduled to execute via atomic operations, and according to the API order of the associated graphics primitives.
Abstract:
A tile coalescer within a graphics processing pipeline coalesces coverage data into tiles. The coverage data indicates, for a set of XY positions, whether a graphics primitive covers those XY positions. The tile indicates, for a larger set of XY positions, whether one or more graphics primitives cover those XY positions. The tile coalescer includes coverage data in the tile only once for each XY position, thereby allowing the API ordering of the graphics primitives covering each XY position to be preserved. The tile is then distributed to a set of streaming multiprocessors for shading and blending operations. The different streaming multiprocessors execute thread groups to process the tile. In doing so, those thread groups may perform read-modify-write operations with data stored in memory. Each such thread group is scheduled to execute via atomic operations, and according to the API order of the associated graphics primitives.
Abstract:
A tile coalescer within a graphics processing pipeline coalesces coverage data into tiles. The coverage data indicates, for a set of XY positions, whether a graphics primitive covers those XY positions. The tile indicates, for a larger set of XY positions, whether one or more graphics primitives cover those XY positions. The tile coalescer includes coverage data in the tile only once for each XY position, thereby allowing the API ordering of the graphics primitives covering each XY position to be preserved. The tile is then distributed to a set of streaming multiprocessors for shading and blending operations. The different streaming multiprocessors execute thread groups to process the tile. In doing so, those thread groups may perform read-modify-write operations with data stored in memory. Each such thread group is scheduled to execute via atomic operations, and according to the API order of the associated graphics primitives.
Abstract:
Techniques for dispatching pixel information in a graphics processing pipeline. A fragment processing unit generates a pixel that includes multiple samples based on a first portion of a graphics primitive received by a first thread. The fragment processing unit calculates a first value for the first pixel, where the first value is calculated only once for the pixel. The fragment processing unit calculates a first set of values for the samples, where each value in the first set of values corresponds to a different sample and is calculated only once for the corresponding sample. The fragment processing unit combines the first value with each value in the first set of values to create a second set of values. The fragment processing unit creates one or more dispatch messages to store the second set of values in a set of output registers.
Abstract:
A tile coalescer within a graphics processing pipeline coalesces coverage data into tiles. The coverage data indicates, for a set of XY positions, whether a graphics primitive covers those XY positions. The tile indicates, for a larger set of XY positions, whether one or more graphics primitives cover those XY positions. The tile coalescer includes coverage data in the tile only once for each XY position, thereby allowing the API ordering of the graphics primitives covering each XY position to be preserved. The tile is then distributed to a set of streaming multiprocessors for shading and blending operations. The different streaming multiprocessors execute thread groups to process the tile. In doing so, those thread groups may perform read-modify-write operations with data stored in memory. Each such thread group is scheduled to execute via atomic operations, and according to the API order of the associated graphics primitives.
Abstract:
A computing system and method for representing volumetric data for a scene. One embodiment of the computing system includes: (1) a memory configured to store a three-dimensional (3D) clipmap data structure having at least one clip level and at least one mip level, and (2) a processor configured to generate voxelized data for a scene and cause the voxelized data to be stored in the 3D clipmap data structure.
Abstract:
A method for reducing redundant rendering of frames includes receiving draw calls including state information for a frame. The method includes generating respective bounding boxes for the draw calls. The bounding box is generated based on vertex data, vertex programs and transformation matrices. The method includes comparing the draw calls of the frame to the draw calls of one or more previous frames and identifying draw calls that are not identical in the compared frames. The method includes identifying the bounding boxes containing altered regions of the frames based on the draw calls that are not identical in the compared frames. The method includes reducing the altered regions into a smaller set of clip rectangles and rendering only inside the clip rectangles.
Abstract:
One aspect of the current disclosure provides a method of upscaling an image. The method includes: rendering an image, wherein the rendering includes generating color samples of the image at a first resolution and depth samples of the image at a second resolution, which is higher than the first resolution; and upscaling the image to an upscaled image at a third resolution, which is higher than the first resolution, using the color samples and the depth samples.
Abstract:
One aspect of the current disclosure provides a method of upscaling an image. The method includes: rendering an image, wherein the rendering includes generating color samples of the image at a first resolution and depth samples of the image at a second resolution, which is higher than the first resolution; and upscaling the image to an upscaled image at a third resolution, which is higher than the first resolution, using the color samples and the depth samples.
Abstract:
A tile coalescer within a graphics processing pipeline coalesces coverage data into tiles. The coverage data indicates, for a set of XY positions, whether a graphics primitive covers those XY positions. The tile indicates, for a larger set of XY positions, whether one or more graphics primitives cover those XY positions. The tile coalescer includes coverage data in the tile only once for each XY position, thereby allowing the API ordering of the graphics primitives covering each XY position to be preserved. The tile is then distributed to a set of streaming multiprocessors for shading and blending operations. The different streaming multiprocessors execute thread groups to process the tile. In doing so, those thread groups may perform read-modify-write operations with data stored in memory. Each such thread group is scheduled to execute via atomic operations, and according to the API order of the associated graphics primitives.