Abstract:
A system, method, and computer program product for scheduling tasks associated with continuation thread blocks. The method includes the steps of generating a first task metadata data structure in a memory, generating a second task metadata data structure in the memory, executing a first task corresponding to the first task metadata data structure in a processor, generating state information representing a continuation task related to the first task and storing the state information in the second task metadata data structure, executing the continuation task in the processor after the one or more child tasks have finished execution, and indicating that the first task has logically finished execution once the continuation task has finished execution. The second task metadata data structure is related to the first task metadata data structure, and at least one instruction in the first task causes one or more child tasks to be executed by the processor.
Abstract:
A system, method, and computer program product for low-latency scheduling and launch of memory defined tasks. The method includes the steps of receiving a task metadata data structure to be stored in a memory associated with a processor, transmitting the task metadata data structure to a scheduling unit of the processor, storing the task metadata data structure in a cache unit included in the scheduling unit, and copying the task metadata data structure from the cache unit to the memory.
Abstract:
Apparatuses, systems, and techniques to control operation of a memory cache. In at least one embodiment, cache guidance is specified within application source code by associating guidance with declaration of a memory block, and then applying specified guidance to source code statements that access said memory block.
Abstract:
A system, method, and computer program product for management of dynamic task-dependency graphs. The method includes the steps of generating a first task data structure in a memory for a first task, generating a second task data structure in the memory, storing a pointer to the second task data structure in a first output dependence field of the first task data structure, setting a reference counter field of the second task data structure to a threshold value that indicates a number of dependent events associated with the second task, and launching the second task when the reference counter field stores a particular value. The second task data structure is a placeholder for a second task that is dependent on the first task.
Abstract:
A system, method, and computer program product for low-latency scheduling and launch of memory defined tasks. The method includes the steps of receiving a task metadata data structure to be stored in a memory associated with a processor, transmitting the task metadata data structure to a scheduling unit of the processor, storing the task metadata data structure in a cache unit included in the scheduling unit, and copying the task metadata data structure from the cache unit to the memory.
Abstract:
A system, method, and computer program product for management of dynamic task-dependency graphs. The method includes the steps of generating a first task data structure in a memory for a first task, generating a second task data structure in the memory, storing a pointer to the second task data structure in a first output dependence field of the first task data structure, setting a reference counter field of the second task data structure to a threshold value that indicates a number of dependent events associated with the second task, and launching the second task when the reference counter field stores a particular value. The second task data structure is a placeholder for a second task that is dependent on the first task.
Abstract:
A system, method, and computer program product for scheduling tasks associated with continuation thread blocks. The method includes the steps of generating a first task metadata data structure in a memory, generating a second task metadata data structure in the memory, executing a first task corresponding to the first task metadata data structure in a processor, generating state information representing a continuation task related to the first task and storing the state information in the second task metadata data structure, executing the continuation task in the processor after the one or more child tasks have finished execution, and indicating that the first task has logically finished execution once the continuation task has finished execution. The second task metadata data structure is related to the first task metadata data structure, and at least one instruction in the first task causes one or more child tasks to be executed by the processor.