Abstract:
Aspects of the present disclosure are directed towards apparatus useful for processing communications between different signaling voltage levels. Different signaling voltage levels are accomplished by creating true and complement signals from at least one input signal, each of which are subject to different delays, and level shifting the true and complement signals to a new signaling voltage level. The true or complement signal subject to a smaller timing delay is selected, and used to provide an output signal.
Abstract:
A reference output device includes a low side selector configured to select a first voltage level as an output signal. The output signal is a reference voltage. The reference output device also includes a high side selector configured to select a second voltage level as the output signal. The reference output device also includes a slew rate control configured to switch the output signal between the first voltage level and the second voltage level at a constant slew rate.
Abstract:
Embodiments of an electrostatic discharge (ESD) protection device and a method for operating an ESD protection device are described. In one embodiment, an ESD protection device includes a primary ESD protection unit electrically connected to a first node and to a second node and configured to shunt current in response to an ESD pulse received between the first and second nodes and a secondary ESD protection unit electrically connected to the primary ESD protection unit and to the second node and configured to shunt current in response to the ESD pulse to keep an output voltage of the ESD protection device to be within a safe operating voltage range of a device to be protected. Other embodiments are also described.
Abstract:
A low voltage drop rectifier is provided. The rectifier includes a diode having a first terminal coupled at an input node and a second terminal coupled at an output node. A first transistor having a first current electrode is coupled at the input node and a second current electrode is coupled at the output node. A comparator having a first input is coupled at the input node, a second input is coupled at the output node, and an output is coupled to a control electrode of the first transistor. A bias circuit is coupled to the comparator circuit and is configured to generate a bias current in the comparator.
Abstract:
A reference output device includes a low side selector configured to select a first voltage level as an output signal. The output signal is a reference voltage. The reference output device also includes a high side selector configured to select a second voltage level as the output signal. The reference output device also includes a slew rate control configured to switch the output signal between the first voltage level and the second voltage level at a constant slew rate.
Abstract:
Aspects of the present disclosure are directed towards apparatus useful for processing communications between different signaling voltage levels. Different signaling voltage levels are accomplished by creating true and complement signals from at least one input signal, each of which are subject to different delays, and level shifting the true and complement signals to a new signaling voltage level. The true or complement signal subject to a smaller timing delay is selected, and used to provide an output signal.