Abstract:
A calibration system comprises an actuator circuit comprising a first delay circuit that receives a plurality of data pulses and a second delay circuit that receives the pulses, wherein one of the first and second delay circuits delays the data pulses independently of the other of the first and second delay circuits; a data switch that receives an output of the actuator circuit including delay data signals of the data pulses from the first and second delay circuits and switches and outputs a plurality of local oscillator (LO) signals for output as a controlled LO signal according to control signals of the delay data signals and applied to the data switch. At least one calibration switch receives the output of the actuator circuit and the plurality of LO+ and LO− signals, and outputs a second controlled LO signal output to a sense circuit.
Abstract:
There is described a contactless communication device. The device comprises (a) a receiver unit (110, 610) having an antenna input (RXn, Vmid, RXp) for connecting to an antenna, the receiver unit (110, 610) being adapted to couple with a transmitting device and to receive an RF signal transmitted by the transmitting device, the receiver unit (110, 610) being further adapted to determine a point of time relating to a position of data within the RF signal, (b) a comparator (120) adapted to generate a comparator output signal (agc_comp) which is indicative of a relation between a voltage at the antenna input (RXn, Vmid, RXp) of the receiver unit (110, 610) and a reference voltage (Vref), and (c) a voltage regulation circuit coupled to the comparator (120) and to the antenna input (RXn, Vmid, RXp) of the receiver unit (110, 610), the voltage regulation circuit being adapted to repetitively regulate the voltage at the antenna input (RXn, Vmid, RXp) based on the comparator output signal (agc_comp). The voltage regulation circuit is adapted to separate each repetitive regulation of the voltage at the antenna input (RXn, Vmid, RXp) by a first time constant prior to the point of time determined by the receiver unit (110, 610) and by a second time constant after the point of time determined by the receiver unit (110, 610), wherein the first time constant is smaller than the second time constant. There is also described a method, a computer program and a computer program product.
Abstract:
Embodiments of a mixer of a Near field communication (NFC) receiver device and a method for operating a mixer of an NFC receiver device are disclosed. In an embodiment, a mixer of an NFC receiver device includes an input unit from which an input signal is received, a sample and hold circuit configured to sample the input signal and to store electrical charge based on the sampled input signal in order to generate a differential output signal, a control unit configured to switch the sample and hold circuit between different operational modes based on whether the input signal is a single-ended input signal or a differential input signal, and a differential output unit from which the differential output signal is output. Other embodiments are also described.
Abstract:
Embodiments of a method and a system for generating a received signal strength indicator (RSSI) value that corresponds to a radio frequency (RF) signal are disclosed. In an embodiment, a method for generating an RSSI value that corresponds to an RF signal involves obtaining an attenuation factor code in response to applying an automatic gain control (AGC) operation to the RF signal, obtaining an analog-to-digital converter (ADC) code in response to applying an ADC operation to a signal that results from the AGC operation, and combining the attenuation factor code and the ADC code to generate an RSSI value. Other embodiments are also described.
Abstract:
The dynamic range of the output of a radar system with a transmitter and receiver can be optimized by determining the phase of a radar reflection signal at the receiver and adjusting the phase so that the in-phase and quadrature components of the signal have equal amplitudes. The phase can be adjusted at the receiver or by adjusting the phase of the output signal at the transmitter.
Abstract:
Embodiments of a method and a system for generating a received signal strength indicator (RSSI) value that corresponds to a radio frequency (RF) signal are disclosed. In an embodiment, a method for generating an RSSI value that corresponds to an RF signal involves obtaining an attenuation factor code in response to applying an automatic gain control (AGC) operation to the RF signal, obtaining an analog-to-digital converter (ADC) code in response to applying an ADC operation to a signal that results from the AGC operation, and combining the attenuation factor code and the ADC code to generate an RSSI value. Other embodiments are also described.
Abstract:
A calibration system comprises an actuator circuit comprising a first delay circuit that receives a plurality of data pulses and a second delay circuit that receives the pulses, wherein one of the first and second delay circuits delays the data pulses independently of the other of the first and second delay circuits; a data switch that receives an output of the actuator circuit including delay data signals of the data pulses from the first and second delay circuits and switches and outputs a plurality of local oscillator (LO) signals for output as a controlled LO signal according to control signals of the delay data signals and applied to the data switch. At least one calibration switch receives the output of the actuator circuit and the plurality of LO+ and LO− signals, and outputs a second controlled LO signal output to a sense circuit.
Abstract:
Embodiments of methods and systems for gain control in a communications device are described. In an embodiment, a method for gain control in a communications device involves detecting a change in an amplification gain that is applied to an analog signal in the communications device and compensating for the change in the amplification gain by manipulating an amplitude of a digital signal that is converted from the analog signal. Other embodiments are also described.
Abstract:
There is described a contactless communication device. The device comprises (a) a receiver unit (110, 610) having an antenna input (RXn, Vmid, RXp) for connecting to an antenna, the receiver unit (110, 610) being adapted to couple with a transmitting device and to receive an RF signal transmitted by the transmitting device, the receiver unit (110, 610) being further adapted to determine a point of time relating to a position of data within the RF signal, (b) a comparator (120) adapted to generate a comparator output signal (agc_comp) which is indicative of a relation between a voltage at the antenna input (RXn, Vmid, RXp) of the receiver unit (110, 610) and a reference voltage (Vref), and (c) a voltage regulation circuit coupled to the comparator (120) and to the antenna input (RXn, Vmid, RXp) of the receiver unit (110, 610), the voltage regulation circuit being adapted to repetitively regulate the voltage at the antenna input (RXn, Vmid, RXp) based on the comparator output signal (agc_comp). The voltage regulation circuit is adapted to separate each repetitive regulation of the voltage at the antenna input (RXn, Vmid, RXp) by a first time constant prior to the point of time determined by the receiver unit (110, 610) and by a second time constant after the point of time determined by the receiver unit (110, 610), wherein the first time constant is smaller than the second time constant. There is also described a method, a computer program and a computer program product.
Abstract:
Embodiments of a mixer of a Near field communication (NFC) receiver device and a method for operating a mixer of an NFC receiver device are disclosed. In an embodiment, a mixer of an NFC receiver device includes an input unit from which an input signal is received, a sample and hold circuit configured to sample the input signal and to store electrical charge based on the sampled input signal in order to generate a differential output signal, a control unit configured to switch the sample and hold circuit between different operational modes based on whether the input signal is a single-ended input signal or a differential input signal, and a differential output unit from which the differential output signal is output. Other embodiments are also described.