摘要:
The disclosure describes FGS video coding techniques that use cycle-aligned fragments (CAFs). The techniques may perform cycle-based coding of FGS video data block coefficients and syntax elements, and encapsulate cycles in fragments for transmission. The fragments may be cycle-aligned such that a start of a payload of each of the fragments substantially coincides with a start of one of the cycles. In this manner, cycles can be readily accessed via individual fragments. Some cycles may be controlled with a vector mode to scan to a predefined position within a block before moving to another block. In this manner, the number of cycles can be reduced, reducing the number of fragments and associated overhead. The CAFs may be entropy coded independently of one another so that each fragment may be readily accessed and decoded without waiting for decoding of other fragments. Independent entropy coding may permit parallel decoding and simultaneous processing of fragments.
摘要:
This disclosure describes video encoding techniques and video encoding devices that implement such techniques. In one embodiment, this disclosure describes a video encoding device comprising a motion estimator that computes a motion vector predictor based on motion vectors previously calculated for video blocks in proximity to a current video block to be encoded, and uses the motion vector predictor in searching for a prediction video block used to encode the current video block, and a motion compensator that generates a difference block indicative of differences between the current video block to be encoded and the prediction video block.
摘要:
Techniques for estimating distortion due to quantization of data are described. A histogram with multiple bins may be obtained for a set of coefficients to be quantized. Distortion due to quantization of the set of coefficients may be estimated based on the histogram and average distortions for the histogram bins. The number of coefficients in each bin may be multiplied with an average distortion for the bin to obtain a per-bin distortion. The per-bin distortions for all of the bins may be accumulated and scaled with a correction factor to obtain the estimated distortion. The techniques may be used to estimate distortions for a set of coding elements. Distortion and rate may be estimated for each coding element for each of multiple quantization steps. A set of quantization steps may be selected for the set of coding elements based on the estimated distortions and the estimated rates for the set of coding elements for different quantization steps.
摘要:
Techniques for estimating distortion due to quantization of data are described. A histogram with multiple bins may be obtained for a set of coefficients to be quantized. Distortion due to quantization of the set of coefficients may be estimated based on the histogram and average distortions for the histogram bins. The number of coefficients in each bin may be multiplied with an average distortion for the bin to obtain a per-bin distortion. The per-bin distortions for all of the bins may be accumulated and scaled with a correction factor to obtain the estimated distortion. The techniques may be used to estimate distortions for a set of coding elements. Distortion and rate may be estimated for each coding element for each of multiple quantization steps. A set of quantization steps may be selected for the set of coding elements based on the estimated distortions and the estimated rates for the set of coding elements for different quantization steps.
摘要:
The disclosure describes FGS video coding techniques that use cycle-aligned fragments (CAFs). The techniques may perform cycle-based coding of FGS video data block coefficients and syntax elements, and encapsulate cycles in fragments for transmission. The fragments may be cycle-aligned such that a start of a payload of each of the fragments substantially coincides with a start of one of the cycles. In this manner, cycles can be readily accessed via individual fragments. Some cycles may be controlled with a vector mode to scan to a predefined position within a block before moving to another block. In this manner, the number of cycles can be reduced, reducing the number of fragments and associated overhead. The CAFs may be entropy coded independently of one another so that each fragment may be readily accessed and decoded without waiting for decoding of other fragments. Independent entropy coding may permit parallel decoding and simultaneous processing of fragments.
摘要:
An adaptive Intra-refresh (IR) technique for digital video encoding adjusts IR rate based on video content, or a combination of video content and channel condition. The IR rate may be applied at the frame level or macroblock (MB) level. At the frame level, the IR rate specifies the percentage of MBs to be Intra-coded within the frame. At the MB level, the IR rate defines a statistical probability that a particular MB is to be Intra-coded. The IR rate is adjusted in proportion to a combined metric that weighs estimated channel loss probability, frame-to-frame variation, and texture information. The IR rate can be determined using a close-form solution that requires relatively low implementation complexity. For example, such a close-form does not require iteration or an exhaustive search. In addition, the IR rate can be determined from parameters that are available before motion estimation and compensation are performed.
摘要:
A stereo 3D video frame includes left and right components that are combined to produce a stereo image. For a given amount of distortion, the left and right components may have different impacts on perceptual visual quality of the stereo image due to asymmetry in the distortion response of the human eye. A 3D video encoder adjusts an allocation of coding bits between left and right components of the 3D video based on a frame-level bit budget and a weighting between the left and right components. The video encoder may generate the bit allocation in the rho (ρ) domain. The weighted bit allocation may be derived based on a quality metric that indicates overall quality produced by the left and right components. The weighted bit allocation compensates for the asymmetric distortion response to reduce overall perceptual distortion in the stereo image and thereby enhance or maintain visual quality.
摘要:
Error concealment is used to hide the effects of errors detected within digital video information. A complex error concealment mode decision is disclosed to determine whether spatial error concealment (SEC) or temporal error concealment (TEC) should be used. The error concealment mode decision system uses different methods depending on whether the damaged frame is an intra-frame or an inter-frame. If the video frame is an intra-frame then a similarity metric is used to determine if the intra-frame represents a scene-change or not. If the video frame is an intra-frame, a complex multi-termed equation is used to determine whether SEC or TEC should be used. A novel spatial error concealment technique is disclosed for use when the error concealment mode decision determines that spatial error concealment should be used for reconstruction. The novel spatial error concealment technique divides a corrupt macroblock into four different regions, a corner region, a row adjacent to the corner region, a column adjacent to the corner region, and a remainder main region. Those regions are then reconstructed in that order and information from earlier reconstructed regions may be used in later reconstructed regions. Finally, a macroblock refreshment technique is disclosed for preventing error propagation from harming non-corrupt inter-blocks. Specifically, an inter-macroblock may be ‘refreshed’ using spatial error concealment if there has been significant error caused damage that may cause the inter-block to propagate the errors.
摘要:
Systems, methods, and apparatus described include waveform alignment operations in which a single set of evaluated cosines and sines is used to calculate cross-correlations of two periodic waveforms at two different phase shifts.
摘要:
Methods and apparatus are presented for determining the type of acoustic signal and the type of frequency spectrum exhibited by the acoustic signal in order to selectively delete parameter information before vector quantization. The bits that would otherwise be allocated to the deleted parameters can then be re-allocated to the quantization of the remaining parameters, which results in an improvement of the perceptual quality of the synthesized acoustic signal. Alternatively, the bits that would have been allocated to the deleted parameters are dropped, resulting in an overall bit-rate reduction.