摘要:
An adaptive Intra-refresh (IR) technique for digital video encoding adjusts IR rate based on video content, or a combination of video content and channel condition. The IR rate may be applied at the frame level or macroblock (MB) level. At the frame level, the IR rate specifies the percentage of MBs to be Intra-coded within the frame. At the MB level, the IR rate defines a statistical probability that a particular MB is to be Intra-coded. The IR rate is adjusted in proportion to a combined metric that weighs estimated channel loss probability, frame-to-frame variation, and texture information. The IR rate can be determined using a close-form solution that requires relatively low implementation complexity. For example, such a close-form does not require iteration or an exhaustive search. In addition, the IR rate can be determined from parameters that are available before motion estimation and compensation are performed.
摘要:
A stereo 3D video frame includes left and right components that are combined to produce a stereo image. For a given amount of distortion, the left and right components may have different impacts on perceptual visual quality of the stereo image due to asymmetry in the distortion response of the human eye. A 3D video encoder adjusts an allocation of coding bits between left and right components of the 3D video based on a frame-level bit budget and a weighting between the left and right components. The video encoder may generate the bit allocation in the rho (ρ) domain. The weighted bit allocation may be derived based on a quality metric that indicates overall quality produced by the left and right components. The weighted bit allocation compensates for the asymmetric distortion response to reduce overall perceptual distortion in the stereo image and thereby enhance or maintain visual quality.
摘要:
Methods and apparatus are presented for determining the type of acoustic signal and the type of frequency spectrum exhibited by the acoustic signal in order to selectively delete parameter information before vector quantization. The bits that would otherwise be allocated to the deleted parameters can then be re-allocated to the quantization of the remaining parameters, which results in an improvement of the perceptual quality of the synthesized acoustic signal. Alternatively, the bits that would have been allocated to the deleted parameters are dropped, resulting in an overall bit-rate reduction.
摘要:
A stereo 3D video frame includes left and right components that are combined to produce a stereo image. For a given amount of distortion, the left and right components may have different impacts on perceptual visual quality of the stereo image due to asymmetry in the distortion response of the human eye. A 3D video encoder adjusts an allocation of coding bits between left and right components of the 3D video based on a frame-level bit budget and a weighting between the left and right components. The video encoder may generate the bit allocation in the rho (ρ) domain. The weighted bit allocation may be derived based on a quality metric that indicates overall quality produced by the left and right components. The weighted bit allocation compensates for the asymmetric distortion response to reduce overall perceptual distortion in the stereo image and thereby enhance or maintain visual quality.
摘要:
Techniques are presented herein to provide tandem-free operation between two wireless terminals through two otherwise incompatible wireless networks. Specifically, embodiments provide tandem-free operation between a wireless terminal communicating through a continuous transmission (CTX) wireless channel to a wireless terminal communicating through a discontinuous transmission (DTX) wireless channel. In a first aspect, inactive speech frames are translated between DTX and CTX formats. In a second aspect, each wireless terminal includes an active speech decoder that is compatible with the active speech encoder on the opposite end of the mobile-to-mobile connection.
摘要:
Techniques are presented herein to provide tandem-free operation between two wireless terminals through two otherwise incompatible wireless networks. Specifically, embodiments provide tandem-free operation between a wireless terminal communicating through a continuous transmission (CTX) wireless channel to a wireless terminal communicating through a discontinuous transmission (DTX) wireless channel. In a first aspect, inactive speech frames are translated between DTX and CTX formats. In a second aspect, each wireless terminal includes an active speech decoder that is compatible with the active speech encoder on the opposite end of the mobile-to-mobile connection.
摘要:
This disclosure describes deblock filtering techniques in which an in-loop deblock filter of a first codec is used as a post deblock filter of a second codec. A number of techniques are also described to facilitate input parameter adjustments and allow for the effective use of the filter with both codecs. The techniques can simplify the architecture of a device that includes multiple codecs operating according to different coding standards. Specifically, the different codecs can use the same deblocking filter regardless of whether the coding standard calls for in-loop filtering or whether post filtering is used. For example, a filter designed as an in-loop deblocking filter for a codec that complies with the ITU-T H.264 coding standard can be used as a post deblocking filter for MPEG-4 video.
摘要:
An adaptive Intra-refresh (IR) technique for digital video encoding adjusts IR rate based on video content, or a combination of video content and channel condition. The IR rate may be applied at the frame level or macroblock (MB) level. At the frame level, the IR rate specifies the percentage of MBs to be Intra-coded within the frame. At the MB level, the IR rate defines a statistical probability that a particular MB is to be Intra-coded. The IR rate is adjusted in proportion to a combined metric that weighs estimated channel loss probability, frame-to-frame variation, and texture information. The IR rate can be determined using a close-form solution that requires relatively low implementation complexity. For example, such a close-form does not require iteration or an exhaustive search. In addition, the IR rate can be determined from parameters that are available before motion estimation and compensation are performed.
摘要:
This disclosure describes deblock filtering techniques in which an in-loop deblock filter of a first codec is used as a post deblock filter of a second codec. A number of techniques are also described to facilitate input parameter adjustments and allow for the effective use of the filter with both codecs. The techniques can simplify the architecture of a device that includes multiple codecs operating according to different coding standards. Specifically, the different codecs can use the same deblocking filter regardless of whether the coding standard calls for in-loop filtering or whether post filtering is used. For example, a filter designed as an in-loop deblocking filter for a codec that complies with the ITU-T H.264 coding standard can be used as a post deblocking filter for MPEG-4 video.
摘要:
Error concealment is used to hide the effects of errors detected within digital video information. A complex error concealment mode decision is disclosed to determine whether spatial error concealment (SEC) or temporal error concealment (TEC) should be used. The error concealment mode decision system uses different methods depending on whether the damaged frame is an intra-frame or an inter-frame. If the video frame is an intra-frame then a similarity metric is used to determine if the intra-frame represents a scene-change or not. If the video frame is an intra-frame, a complex multi-termed equation is used to determine whether SEC or TEC should be used. A novel spatial error concealment technique is disclosed for use when the error concealment mode decision determines that spatial error concealment should be used for reconstruction. The novel spatial error concealment technique divides a corrupt macroblock into four different regions, a corner region, a row adjacent to the corner region, a column adjacent to the corner region, and a remainder main region. Those regions are then reconstructed in that order and information from earlier reconstructed regions may be used in later reconstructed regions. Finally, a macroblock refreshment technique is disclosed for preventing error propagation from harming non-corrupt inter-blocks. Specifically, an inter-macroblock may be ‘refreshed’ using spatial error concealment if there has been significant error caused damage that may cause the inter-block to propagate the errors.