摘要:
An apparatus is provided. The apparatus comprises a second layer disposed over a first layer. Each of the first and second layers have a set of detection electrodes that are spaced apart and electrically isolated from one another and an associated set of interleavers. Each interleaver is located between adjacent detection electrodes from its associated the set of detection electrodes, and each set of interleavers also includes a pair of complementary interleaving electrodes coupled to those that are electrically coupled to the adjacent detection electrodes from its associated set of detection electrodes. The detection electrodes and interleaving electrodes are also substantially transparent to visible spectrum light.
摘要:
An apparatus is provided. The apparatus comprises a second layer disposed over a first layer. Each of the first and second layers have a set of detection electrodes that are spaced apart and electrically isolated from one another and an associated set of interleavers. Each interleaver is located between adjacent detection electrodes from its associated the set of detection electrodes, and each set of interleavers also includes a pair of complementary interleaving electrodes coupled to those that are electrically coupled to the adjacent detection electrodes from its associated set of detection electrodes. The detection electrodes and interleaving electrodes are also substantially transparent to visible spectrum light.
摘要:
An identification address of a sensor interface device is configured in response to the order of connection of first (DXP1) and second (DXN1) package pins to electrodes of a sensor (Q0). A sensor signal processing circuit (23) has first and second inputs coupled through the first and second pins to the sensor for converting a parameter sensed by the sensor to a different representation. A current is forced through the first pin to produce either a high or low voltage on the first pin depending on the order of connection of the first and second pins to the electrodes of the sensor. A voltage on the first pin is compared with a reference voltage to produce a comparison signal which is mapped to produce the identification address.
摘要:
A reconfigurable circuit (10) includes an integrator (30) having switches (SW1-6) for selectively coupling input capacitors (C0,1,2,3,6,7) and integrating capacitors (C4,5) to terminals of the integrator (30) for operation of a hybrid delta-sigma/SAR ADC (400) so as to create a reference voltage value (Vref) equal to the sum of a first voltage (ΔVbe) and a second voltage (Vbe). A first integration is performed to reduce the integrator output voltage swing. A residue (Vresidue) of the integrator is multiplied by 2. Then the second voltage (Vbe) is integrated in a first direction if a comparator (22) coupled to the integrator changes state or in an opposite direction if the comparator does not change state. The first voltage (ΔVbe) is integrated in a direction that causes the integrator output voltage (Vout) to equal either 2×Vresidue−Vref or 2×Vresidue+Vref.
摘要:
Various systems and methods for capturing data are disclosed. For example, some embodiments of the present invention provide methods for performing a first analog to digital conversion using a delta-sigma based analog to digital converter, and performing a second analog to digital conversion using a SAR based analog to digital converter. The delta-sigma converter provides a first portion of a conversion result, and the SAR based analog to digital converter provides a second portion of the conversion result. The methods further include combining the first portion of the conversion result with the second portion of the conversion result to produce a combined conversion result.
摘要:
A circuit (1-2) for compensating for variations in the current gain β of a sensing transistor (Q1) having a collector coupled to a reference voltage (GND) includes a first current mirror (20) having an input coupled to a base of the sensing transistor. A second current mirror (21) has an input coupled to an output of the first current mirror. A current source (13) is coupled to provide emitter current for the sensing transistor. An output of the second current mirror circuit (21) feeds base current of the sensing transistor back to its emitter to cause the collector current of the sensing transistor to be precisely equal to the current (I1) provided by the current source.
摘要:
A differential input circuit (1-1) includes first (Q0) and second (Q1) input transistors having control electrodes coupled to first (Vin+) and second (Vin−) input signals, respectively. A pass transistor (P3) is coupled between first electrodes of the first and second input transistors. First (N1) and second (N2) level shift transistors have control electrodes coupled to the first and second input signals, respectively. A voltage selector circuit (22) selects a voltage on a first electrode of one of the first and second level shift transistors according to which is at a higher voltage, and produces a corresponding control voltage (V19) on a control electrode of the pass transistor so as to limit a voltage difference between the first electrode and the control electrode of the first input transistor (Q0) when it is turned off in response to a large difference between the first and second input signals.
摘要:
An output stage (1-2) includes a gain circuit (Q1,Q2) for driving a base of a main transistor (Q3) having a collector coupled to an output (18) in response to an input signal V11) which also controls a base of an auxiliary transistor (Q7) having a collector coupled to the output. A clamping transistor (Q6) has a control electrode coupled to the base of the auxiliary transistor, a first electrode coupled to the output, and a second electrode coupled to provide feedback from the output via the gain circuit to the base of the main transistor and to provide feedback from the output to the base of the auxiliary transistor. When the auxiliary transistor goes into deep saturation it causes the clamping transistor to provide negative feedback from the output to the main output stage so as to prevent the main transistor from going into deep saturation.
摘要:
Various systems and methods for temperature measurement are disclosed. For example, some embodiments of the present invention provide temperature measurement systems. Such temperature measurement systems include a variable current source and a diode connected transistor. The variable current source is capable of applying two or more distinct currents to the diode connected transistor. The currents result in a different base-emitter voltage on the diode connected transistor. The systems further include an n-factor coefficient register and an analog to digital converter. The analog to digital converter is operable to receive two of the base-emitter voltages created by applying the different currents, and to provide a digital output based at least in part on a value stored in the n-factor coefficient register and the two base-emitter voltages.
摘要:
An output stage (1-2) includes a gain circuit (Q1,Q2) for driving a base of a main transistor (Q3) having a collector coupled to an output (18) in response to an input signal V11) which also controls a base of an auxiliary transistor (Q7) having a collector coupled to the output. A clamping transistor (Q6) has a control electrode coupled to the base of the auxiliary transistor, a first electrode coupled to the output, and a second electrode coupled to provide feedback from the output via the gain circuit to the base of the main transistor and to provide feedback from the output to the base of the auxiliary transistor. When the auxiliary transistor goes into deep saturation it causes the clamping transistor to provide negative feedback from the output to the main output stage so as to prevent the main transistor from going into deep saturation.