摘要:
Various systems and methods for capturing data are disclosed. For example, some embodiments of the present invention provide methods for performing a first analog to digital conversion using a delta-sigma based analog to digital converter, and performing a second analog to digital conversion using a SAR based analog to digital converter. The delta-sigma converter provides a first portion of a conversion result, and the SAR based analog to digital converter provides a second portion of the conversion result. The methods further include combining the first portion of the conversion result with the second portion of the conversion result to produce a combined conversion result.
摘要:
Various systems and methods for capturing data are disclosed. For example, some embodiments of the present invention provide methods for performing a first analog to digital conversion using a delta-sigma based analog to digital converter, and performing a second analog to digital conversion using a SAR based analog to digital converter. The delta-sigma converter provides a first portion of a conversion result, and the SAR based analog to digital converter provides a second portion of the conversion result. The methods further include combining the first portion of the conversion result with the second portion of the conversion result to produce a combined conversion result.
摘要:
A reconfigurable circuit (10) includes an integrator (30) having switches (SW1-6) for selectively coupling input capacitors (C0,1,2,3,6,7) and integrating capacitors (C4,5) to terminals of the integrator (30) for operation of a hybrid delta-sigma/SAR ADC (400) so as to create a reference voltage value (Vref) equal to the sum of a first voltage (ΔVbe) and a second voltage (Vbe). A first integration is performed to reduce the integrator output voltage swing. A residue (Vresidue) of the integrator is multiplied by 2. Then the second voltage (Vbe) is integrated in a first direction if a comparator (22) coupled to the integrator changes state or in an opposite direction if the comparator does not change state. The first voltage (ΔVbe) is integrated in a direction that causes the integrator output voltage (Vout) to equal either 2×Vresidue−Vref or 2×Vresidue+Vref.
摘要:
A programmable offset amplifier includes first (M1) and second (M2) input transistors having differentially connected sources and gates coupled to first (Vin+) and second (Vin−) input voltages. A tail current (Itail1) is shared between the first and second input transistors. First (M3) and second (M4) load devices are coupled between a reference voltage and drains of the first and second input transistors, respectively. An output stage (13) has a first input (+) coupled to the drain of the second input transistor and a second input (−) coupled to the drain of the first input transistor. Programmable voltage changes are produced on input elements of programmable input offset circuitry to cause changes in offset voltages associated with electrodes of the input transistors which are reflected back to the amplifier input to provide a large programmable input-referred offset voltage.
摘要:
Gain errors are corrected in an ADC chip including an integrator (17), a comparator (30), and a digital filter (37) by storing a gain-adjusted LSB size based on measured gain error in a memory (44). The gain-adjusted LSB size is applied to the digital filter to cause gain-adjusted LSB size values to be added to or subtracted from accumulated content of the digital filter in accordance with a first or second state, respectively, of the comparator (30) during each cycle of the ADC. The final accumulated content after all required cycles of the ADC is a gain-corrected digital output signal (Dout(gain-corrected)).
摘要:
A digital to analog converter includes a coarse resolution resistor circuit (11) coupled between a first voltage (Vin) and an intermediate voltage (V0) to produce coarse resolution node voltages (V0, . . . V240), and also includes a fine resolution resistor circuit (20) coupled between the intermediate voltage and a second voltage (GND). One of the coarse resolution node voltages is selected in response to a group of MSB bits of a digital input (D0,1 . . . ) to produce a first output voltage (Vout2), and one of the fine resolution node voltages is selected in response to group of LSB bits of the digital input to produce a second output voltage (Vout1), the second output voltage (Vout1) and the first output voltage (Vout2) providing a differential analog output signal (Vout1−Vout2). In one embodiment, the coarse resolution and fine resolution resistor circuits are string resistor circuits, and in another embodiment they are modified R-2R networks.
摘要:
A circuit for generating a band gap reference voltage (VREF) includes circuitry (I3×7) for supplying a first current to a first conductor (NODE1) and a second current to a second conductor (NODE2). The first conductor is successively coupled to a plurality of diodes (Q0×16), respectively, in response to a digital signal (CTL-VBE) to cause the first current to successively flow into selected diodes. The second conductor is coupled to collectors of the diodes which are not presently coupled to the first conductor. The diodes are successively coupled to the first conductor so that the first current causes the diodes, respectively, to produce relatively large VBE voltages on the first conductor and the second current causes sets of the diodes not coupled to the first conductor to produce relatively small VBE voltages on the second conductor. The relatively large and small VBE voltages provide differential band gap charges (QCA-QCB) which are averaged to provide a stable band gap reference voltage (VREF).
摘要:
A circuit for generating a band gap reference voltage (VREF) includes circuitry (I3×7) for supplying a first current to a first conductor (NODE1) and a second current to a second conductor (NODE2). The first conductor is successively coupled to a plurality of diodes (Q0×16), respectively, in response to a digital signal (CTL-VBE) to cause the first current to successively flow into selected diodes. The second conductor is coupled to collectors of the diodes which are not presently coupled to the first conductor. The diodes are successively coupled to the first conductor so that the first current causes the diodes, respectively, to produce relatively large VBE voltages on the first conductor and the second current causes sets of the diodes not coupled to the first conductor to produce relatively small VBE voltages on the second conductor. The relatively large and small VBE voltages provide differential band gap charges (QCA-QCB) which are averaged to provide a stable band gap reference voltage (VREF).
摘要:
A programmable offset amplifier includes first (M1) and second (M2) input transistors having differentially connected sources and gates coupled to first (Vin+) and second (Vin−) input voltages. A tail current (Itail1) is shared between the first and second input transistors. First (M3) and second (M4) load devices are coupled between a reference voltage and drains of the first and second input transistors, respectively. An output stage (13) has a first input (+) coupled to the drain of the second input transistor and a second input (−) coupled to the drain of the first input transistor. Programmable voltage changes are produced on input elements of programmable input offset circuitry to cause changes in offset voltages associated with electrodes of the input transistors which are reflected back to the amplifier input to provide a large programmable input-referred offset voltage.
摘要:
An instrumentation amplifier includes first (11A) and second (12A) input amplifiers having outputs (15A,B) coupled to an output amplifier (13). A first auto-zero stage (20) in the first input amplifier is auto-zeroed to a first voltage level (VREFL), a first input signal (Vin+) is amplified by a second auto-zero stage (24) in the first input amplifier, and the amplified first input signal is coupled to the output amplifier, during a first phase (A). A third auto-zero stage (44) in the second input amplifier is auto-zeroed to a second voltage level (VREFH), a second input signal (Vin−) is amplified by a fourth auto-zero stage (40) in the second input amplifier, and the amplified second input signal is coupled to the output amplifier, during a second phase (B). The second auto-zero stage is auto-zeroed to the first voltage level, the first input signal is amplified by the first auto-zero stage (20), and the amplified first input signal is coupled to the output amplifier, during a third phase (C). The fourth auto-zero stage is auto-zeroed to a the second voltage level, the second input signal is amplified by the third auto-zero stage, and the amplified second input signal is coupled to the output amplifier, during a fourth phase (D).