Abstract:
A metal complex represented by the following Formula (1): (wherein M represents palladium or platinum; L represents a ligand selected from carbon monoxide, an olefin compound, an amine compound, a phosphine compound, an N-heterocyclic carbene compound, a nitrile compound and an isocyanide compound; n represents an integer of 0 to 2 showing the number of the ligand; and each of R1 to R4 represents an organic group). The metal complex described above can be fixed on an inorganic oxide while maintaining a skeletal structure thereof to obtain a supported metal complex, and this makes it possible to allow the supported metal complex to maintain the same catalytic activity as that of the original metal complex. Also, calcining the supported metal complex obtained in the manner described above makes it possible to obtain a supported metal catalyst which is improved in catalytic activity to a greater extent than conventional supported metal catalysts.
Abstract:
It is an object of the present invention to provide a catalyst for a cross-coupling reaction in which an organometallic complex is sufficiently immobilized on a carrier and an object product can be easily obtained in a high yield and in a relatively short reaction time with a relatively small amount of use. The catalyst for a cross-coupling reaction of the present invention has a carrier part composed of a synthetic resin and an organometallic complex part immobilized on the carrier part by chemical bonding, and has a structure represented by formula (P1), wherein in (P1) R1, R2 may be the same or different, and is a substituent such as a hydrogen atom. R3, R4, R5, R6, R8, R9 may be the same or different and are substituents, such as a hydrogen. X represents a halogen atom, and R7 represents a substituent having 3 to 20 carbon atoms with a π bond. RS1 represents the main chain of the synthetic resin precursors having —CH2OH group at their end.
Abstract:
An organometallic complex catalyst is disclosed for use in a cross-coupling reaction. In formula (1), M is the coordination center and represents a metal atom such as Pd or an ion thereof. R1, R2, and R3 may be the same or different and are a substituent such as a hydrogen atom. R4, R5, R6, and R7 may be the same or different and are a substituent such as a hydrogen atom. X represents a halogen atom. R8 represents a substituent that has a π bond and 3-20 carbon atoms. With regard to the electron-donating properties of R1-R7 with respect to the coordination center M of the ligand containing R1-R7 that is indicated in formula (2), R1-R7 are arranged in combination such that the TEP value obtained from infrared spectroscopy shifts toward the high frequency side compared to the TEP value of the ligand of formula (2-1).
Abstract:
A metal complex represented by the following Formula (1): (wherein M represents palladium or platinum; L represents a ligand selected from carbon monoxide, an olefin compound, an amine compound, a phosphine compound, an N-heterocyclic carbene compound, a nitrile compound and an isocyanide compound; n represents an integer of 0 to 2 showing the number of the ligand; and each of R1 to R4 represents an organic group). The metal complex described above can be fixed on an inorganic oxide while maintaining a skeletal structure thereof to obtain a supported metal complex, which makes it possible to allow the supported metal complex to maintain the same catalytic activity as that of the original metal complex. Also, calcining the supported metal complex obtained in the manner described above makes it possible to obtain a supported metal catalyst improved in catalytic activity to a greater extent than conventional supported metal catalysts.
Abstract translation:由下式(1)表示的金属络合物:其中M表示钯或铂; L表示选自一氧化碳,烯烃化合物,胺化合物,膦化合物,N-杂环卡宾化合物,腈 化合物和异氰化物化合物; n表示0〜2的整数,表示配体数; R 1〜R 4分别表示有机基)。 上述金属络合物可以固定在无机氧化物上,同时保持其骨架结构以获得负载的金属络合物,这使得可以使负载的金属络合物保持与原始金属络合物相同的催化活性。 此外,通过以上述方式煅烧所得到的负载型金属络合物,可以得到比现有的负载型金属催化剂更大程度地得到催化活性提高的负载型金属催化剂。
Abstract:
An organometallic complex catalyst that makes it possible to obtain a higher yield of a desired product than conventional catalysts in a cross-coupling reaction. The organometallic complex catalyst has a structure represented by formula (1) and is for use in a cross-coupling reaction. In formula (1), M is the coordination center and represents a metal atom such as Pd or an ion thereof. R1, R2, and R3 may be the same or different and are a substituent such as a hydrogen atom. R4, R5, R6, and R7 may be the same or different and are a substituent such as a hydrogen atom. X represents a halogen atom. R8 represents a substituent that has a π bond and 3-20 carbon atoms. With regard to the electron-donating properties of R1-R7 with respect to the coordination center M of the ligand containing R1-R7 that is indicated in formula (2), R1-R7 are arranged in combination such that the TEP value obtained from infrared spectroscopy shifts toward the low frequency side compared to the TEP value of the ligand of formula (2-1).
Abstract:
An organometallic complex catalyst that makes it possible to obtain a higher yield of a desired product than conventional catalysts in a cross-coupling reaction. The organometallic complex catalyst has a structure represented by formula (1) and is for use in a cross-coupling reaction. In formula (1), M is the coordination center and represents a metal atom such as Pd or an ion thereof. R1, R2, and R3 may be the same or different and are a substituent such as a hydrogen atom. R4, R5, R6, and R7 may be the same or different and are a substituent such as a hydrogen atom. X represents a halogen atom. R8 represents a substituent that has a π bond and 3-20 carbon atoms. With regard to the electron-donating properties of R1-R7 with respect to the coordination center M of the ligand containing R1-R7 that is indicated in formula (2), R1-R7 are arranged in combination such that the TEP value obtained from infrared spectroscopy shifts toward the low frequency side compared to the TEP value of the ligand of formula (2-1).
Abstract:
It is an object of the present invention to provide a catalyst for a cross-coupling reaction in which an organometallic complex is sufficiently immobilized on a carrier and an object product can be easily obtained. The catalyst for a cross-coupling reaction of the present invention has a carrier part composed of a synthetic resin and an organometallic complex part immobilized on the carrier part by chemical bonding, and has a structure represented by formula (P1), wherein in (P1) R1, R2 may be the same or different, and is a substituent such as a hydrogen atom. R3, R4, R5, R6, R8, R9 may be the same or different and are substituents, such as a hydrogen. X represents a halogen atom, and R7 represents a substituent having 3 to 20 carbon atoms with a π bond. RS1 represents the main chain of the synthetic resin precursors having —CH2OH group at their end.
Abstract:
An object of the present invention is to provide a method for producing tetraalkoxysilane while saving energy at a high yield. Tetraalkoxysilane can be produced while saving energy at a high yield by the method including a first step of reacting alcohol with carbon dioxide in the presence of a dehydrating agent and/or in a reactor provided with a dehydrating means, and a second step of reacting a reaction mixture obtained in the first step with silicon oxide.
Abstract:
An organometallic complex catalyst is disclosed for use in a cross-coupling reaction. In formula (1), M is the coordination center and represents a metal atom such as Pd or an ion thereof. R1, R2, and R3 may be the same or different and are a substituent such as a hydrogen atom. R4, R5, R6, and R7 may be the same or different and are a substituent such as a hydrogen atom. X represents a halogen atom. R8 represents a substituent that has a π bond and 3-20 carbon atoms. With regard to the electron-donating properties of R1-R7 with respect to the coordination center M of the ligand containing R1-R7 that is indicated in formula (2), R1-R7 are arranged in combination such that the TEP value obtained from infrared spectroscopy shifts toward the high frequency side compared to the TEP value of the ligand of formula (2-1).
Abstract:
A resin composition includes: (a) a supported platinum catalyst having a structure shown by the following general formula (1) in which a platinum complex is supported on a surface of an inorganic oxide; and (b) a thermoplastic matrix resin. The resin composition is usable as an addition-reaction catalyst capable of imparting sufficient storability and quick curability to an addition-reaction curable composition. In the formula, L represents a ligand selected from carbon monoxide, an olefin compound, an amine compound, a phosphine compound, an N-heterocyclic carbene compound, a nitrile compound, and an isocyanide compound; and n represents the number of Ls and an integer from 0 to 2.