Abstract:
A metal complex represented by the following Formula (1): (wherein M represents palladium or platinum; L represents a ligand selected from carbon monoxide, an olefin compound, an amine compound, a phosphine compound, an N-heterocyclic carbene compound, a nitrile compound and an isocyanide compound; n represents an integer of 0 to 2 showing the number of the ligand; and each of R1 to R4 represents an organic group). The metal complex described above can be fixed on an inorganic oxide while maintaining a skeletal structure thereof to obtain a supported metal complex, which makes it possible to allow the supported metal complex to maintain the same catalytic activity as that of the original metal complex. Also, calcining the supported metal complex obtained in the manner described above makes it possible to obtain a supported metal catalyst improved in catalytic activity to a greater extent than conventional supported metal catalysts.
Abstract translation:由下式(1)表示的金属络合物:其中M表示钯或铂; L表示选自一氧化碳,烯烃化合物,胺化合物,膦化合物,N-杂环卡宾化合物,腈 化合物和异氰化物化合物; n表示0〜2的整数,表示配体数; R 1〜R 4分别表示有机基)。 上述金属络合物可以固定在无机氧化物上,同时保持其骨架结构以获得负载的金属络合物,这使得可以使负载的金属络合物保持与原始金属络合物相同的催化活性。 此外,通过以上述方式煅烧所得到的负载型金属络合物,可以得到比现有的负载型金属催化剂更大程度地得到催化活性提高的负载型金属催化剂。
Abstract:
A metal complex represented by the following Formula (1): (wherein M represents palladium or platinum; L represents a ligand selected from carbon monoxide, an olefin compound, an amine compound, a phosphine compound, an N-heterocyclic carbene compound, a nitrile compound and an isocyanide compound; n represents an integer of 0 to 2 showing the number of the ligand; and each of R1 to R4 represents an organic group). The metal complex described above can be fixed on an inorganic oxide while maintaining a skeletal structure thereof to obtain a supported metal complex, and this makes it possible to allow the supported metal complex to maintain the same catalytic activity as that of the original metal complex. Also, calcining the supported metal complex obtained in the manner described above makes it possible to obtain a supported metal catalyst which is improved in catalytic activity to a greater extent than conventional supported metal catalysts.
Abstract:
An object of the present invention is to provide a method for producing tetraalkoxysilane while saving energy at a high yield. Tetraalkoxysilane can be produced while saving energy at a high yield by the method including a first step of reacting alcohol with carbon dioxide in the presence of a dehydrating agent and/or in a reactor provided with a dehydrating means, and a second step of reacting a reaction mixture obtained in the first step with silicon oxide.
Abstract:
An object of the present invention is to provide a method for producing tetraalkoxysilane while saving energy at a high yield. Tetraalkoxysilane can be produced while saving energy at a high yield by the method including a first step of reacting alcohol with carbon dioxide in the presence of a dehydrating agent and/or in a reactor provided with a dehydrating means, and a second step of reacting a reaction mixture obtained in the first step with silicon oxide.
Abstract:
A metal complex represented by the following Formula (1): (wherein M represents palladium or platinum; L represents a ligand selected from carbon monoxide, an olefin compound, an amine compound, a phosphine compound, an N-heterocyclic carbene compound, a nitrile compound and an isocyanide compound; n represents an integer of 0 to 2 showing the number of the ligand; and each of R1 to R4 represents an organic group). The metal complex described above can be fixed on an inorganic oxide while maintaining a skeletal structure thereof to obtain a supported metal complex, which makes it possible to allow the supported metal complex to maintain the same catalytic activity as that of the original metal complex. Also, calcining the supported metal complex obtained in the manner described above makes it possible to obtain a supported metal catalyst improved in catalytic activity to a greater extent than conventional supported metal catalysts.
Abstract:
An object of the present invention is to provide a method capable of producing a tetraalkoxysilane with a high energy efficiency and with a high yield. The present invention provides a method for producing a tetraalkoxysilane, the method including: a first step of reacting an alcohol with a silicon oxide; and a second step of bringing a vaporized component of the reaction mixture obtained in the first step into contact with a molecular sieve.
Abstract:
A method of production of carbamic acid ester has a high yield and high selectivity and is superior in economy. The method of production of a carbamic acid ester includes reacting an amine, carbon dioxide, and an alkoxysilane compound in the presence of a catalyst containing a zinc compound or an alkali metal compound or in the presence of an ionic liquid. A carbamic acid ester is produced, for example by reacting aniline, carbon dioxide, and tetramethoxysilane at a temperature of 150 to 180° C. in the presence of zinc acetate and 2,2′-bipyridine.
Abstract:
A metal complex represented by the following Formula (1): (wherein M represents palladium or platinum; L represents a ligand selected from carbon monoxide, an olefin compound, an amine compound, a phosphine compound, an N-heterocyclic carbene compound, a nitrile compound and an isocyanide compound; n represents an integer of 0 to 2 showing the number of the ligand; and each of R1 to R4 represents an organic group). The metal complex described above can be fixed on an inorganic oxide while maintaining a skeletal structure thereof to obtain a supported metal complex, and this makes it possible to allow the supported metal complex to maintain the same catalytic activity as that of the original metal complex.Also, calcining the supported metal complex obtained in the manner described above makes it possible to obtain a supported metal catalyst which is improved in catalytic activity to a greater extent than conventional supported metal catalysts.