Abstract:
One or more techniques and/or systems are provided for multicast transport configuration, for multicast transport, and/or for fault policy implementation. In an example, a multicast component may receive a data copy request from an application to copy data to multiple destinations. A scheduler component may create a transport schedule specifying an order with which to facilitate data copy operations across transports, such as heterogeneous transports, to the destinations. A dispatcher component may apply application specified transport modifiers to the data copy operations (e.g., a modification to a quality of service for a transport). The dispatcher component may facilitate the data copy operations and provide operation result information to a policy agent. The policy agent may provide notifications of data copy operation statuses from the operation result information and/or may implement a fault policy (e.g., a retry on a different transport) for a data copy operation that experienced a fault.
Abstract:
One or more techniques and/or systems are provided for multicast transport configuration, for multicast transport, and/or for fault policy implementation. In an example, a multicast component may receive a data copy request from an application to copy data to multiple destinations. A scheduler component may create a transport schedule specifying an order with which to facilitate data copy operations across transports, such as heterogeneous transports, to the destinations. A dispatcher component may apply application specified transport modifiers to the data copy operations (e.g., a modification to a quality of service for a transport). The dispatcher component may facilitate the data copy operations and provide operation result information to a policy agent. The policy agent may provide notifications of data copy operation statuses from the operation result information and/or may implement a fault policy (e.g., a retry on a different transport) for a data copy operation that experienced a fault.
Abstract:
Described herein are method and apparatus for scheduling access requests for a multi-bank low-latency random read memory (LLRRM) device within a storage system. The LLRRM device comprising a plurality of memory banks, each bank being simultaneously and independently accessible. A queuing layer residing in storage system may allocate a plurality of request-queuing data structures (“queues”), each queue being assigned to a memory bank. The queuing layer may receive access requests for memory banks in the LLRRM device and store each received access request in the queue assigned to the requested memory bank. The queuing layer may then send, to the LLRRM device for processing, an access request from each request-queuing data structure in successive order. As such, requests sent to the LLRRM device will comprise requests that will be applied to each memory bank in successive order as well, thereby reducing access latencies of the LLRRM device.
Abstract:
One or more techniques and/or systems are provided for multicast transport configuration, for multicast transport, and/or for fault policy implementation. In an example, a multicast component may receive a data copy request from an application to copy data to multiple destinations. A scheduler component may create a transport schedule specifying an order with which to facilitate data copy operations across transports, such as heterogeneous transports, to the destinations. A dispatcher component may apply application specified transport modifiers to the data copy operations (e.g., a modification to a quality of service for a transport). The dispatcher component may facilitate the data copy operations and provide operation result information to a policy agent. The policy agent may provide notifications of data copy operation statuses from the operation result information and/or may implement a fault policy (e.g., a retry on a different transport) for a data copy operation that experienced a fault.
Abstract:
In an aspect of the subject matter, a “full” amount of the flash cache (e.g., storage cells) is initially utilized to store data i.e., substantially all of the storage space of the flash cache may be designated to store user data, with the remaining storage space designated to store ECC information (e.g., parity bits) associated with a predefined ECC algorithm utilized to encode the user data. When a bit errors associated with the user data reaches a predefined threshold value, the storage space of the flash cache may transition to store less user data so as to accommodate the space needed to store ECC information associated with a stronger ECC algorithm. The storage space of the flash cache designated to store user data is reduced, while the storage space designated to store ECC information is increased to accommodate the stronger ECC algorithm.