摘要:
Methods and example implementations described herein are generally directed to interconnect architecture, and more specifically, to generation of one or more expanded transactions for conducting simulations and/or NoC design. Aspects of the present disclosure include processing of input traffic specification that is given in terms of groups of hosts, requests, and responses to the requests, in order to generate one or more appropriate/correct expanded transactions that can be simulated.
摘要:
A network-on-chip configuration includes a first plurality of cores arranged in a two-dimensional mesh; a first plurality of routers, each of the first plurality of routers associated with a corresponding local one of the first plurality of cores, each of the first plurality of routers having a plurality of directional ports configured to provide connections to other ones of the first plurality of routers; a second plurality of cores disposed around a periphery of the two-dimensional mesh arrangement; and a second plurality of routers, each of the second plurality of routers associated with a corresponding local one of the second plurality of cores, and having a directional port configured to provide a connection to a neighboring one of the first plurality of routers.
摘要:
Example implementations are directed to more efficiently delivering a multicast message to multiple destination components from a source component. Multicast environment is achieved with transmission of a single message from a source component, which gets replicated in the NoC during routing towards the destination components indicated in the message. Example implementations further relate to an efficient way of implementing multicast in any given NoC topology, wherein one or more multicast trees in the given NoC topology are formed and one of these trees are used for routing a multicast message to its intended destination components mentioned therein.
摘要:
Systems and methods for performing multi-message transaction based performance simulations of SoC IP cores within a Network on Chip (NoC) interconnect architecture by accurately imitating full SoC behavior are described. The example implementations involve simulations to evaluate and detect NoC behavior based on execution of multiple transactions at different rates/times/intervals, wherein each transaction can contain one or more messages, with each message being associated with a source agent and a destination agent. Each message can also be associated with multiple parameters such as rate, size, value, latency, among other like parameters that can be configured to indicate the execution of the transaction by a simulator to simulate a real-time scenario for generating performance reports for the NoC interconnect.
摘要:
The present disclosure is directed to systems and methods for connecting hosts to any router by the use of bridges. Example implementations described herein are directed to determining connections between routers and hosts based on the topology of the NoC and cost functions. Unused routers may also be removed from the NoC configuration and unused directional host ports of routers may be utilized to connect hosts together depending on a cost function and the desired implementation.
摘要:
Systems and methods involving construction of a system interconnect in which different channels have different widths in numbers of bits. Example processes to construct such a heterogeneous channel NoC interconnect are disclosed herein, wherein the channel width may be determined based upon the provided specification of bandwidth and latency between various components of the system.
摘要:
Aspects of the present disclosure provide systems and methods for automatic generation of physically aware aggregation/distribution networks that enable optimized arrangement of a plurality of hardware elements, and provide positions and connectivity for one or more intermediate hardware elements. One or more intermediate hardware elements can be configured to aggregate signals/commands/messages/data from their corresponding hardware elements or from other intermediate hardware elements, and send the aggregated signals/commands/messages/data to a root hardware element that acts as a communication interface for the network. The intermediate hardware elements can also be configured to segregate/distribute signals/commands/message received from the root hardware element to a plurality of specified hardware elements and/or intermediate hardware elements.
摘要:
Example implementations described herein are directed to automatically determine an optimal NoC topology using heuristic based optimizations. First, an optimal orientation of ports of various hosts is determined based on the system traffic and connectivity specification. Second, the NoC routers to which the host's port are directly connected to are determined in the NoC layout. Third, an optimal set of routes are computed for the system traffic and the required routers and channels along the routes are allocated forming the full NoC topology. The three techniques can be applied in any combination to determine NoC topology, host port orientation, and router connectivity that reduces load on various NoC channels and improves latency, performance, and message transmission efficiency between the hosts.
摘要:
Systems and methods described herein are directed to solutions for Network on Chip (NoC) interconnects that supports reconfigurability to support a variety of different traffic profiles each having different sets of traffic flows after the NoC is designed and deployed in a SoC. Reconfiguration of the NoC to map and load a new traffic profile or change the currently mapped traffic profile is performed by an external optimization module which maps various transactions of a given traffic profile to the NoC and reconfigure the NoC hardware by loading the computed mapping information. As part of the mapping process, load balancing between NoC layers may be performed by automatically assigning the transactions in the traffic profile to be routed over certain NoC layers and channels, automatically determining the routes based on the bandwidth requirements of the transaction. The deadlock avoidance and isolation properties of various transactions are maintained during the mapping.
摘要:
Example implementations as described herein are directed to systems and methods for processing a NoC specification for a plurality of performance requirements of a NoC, and generating a plurality of NoCs, each of the plurality of NoCs meeting a first subset of the plurality of performance requirements. For each of the plurality of NoCs, the example implementations involve presenting a difference between an actual performance of the each of the plurality of NoCs and each performance requirement of a second subset of the plurality of performance requirements and one or more costs for each of the plurality of NoCs.