摘要:
A method and apparatus are provided for starting and operating an electric power generation system comprising an electrochemical fuel cell stack for supplying electric current to an external electrical circuit. The stack comprises at least one fuel cell comprising a membrane electrode assembly comprising an anode, a cathode, and a water permeable ion exchange membrane interposed between the anode and the cathode. A fuel stream and an oxidant stream are each flowable to the fuel cell. At least a portion of the membrane electrode assembly has a temperature below the freezing temperature of water. The supply of electric current to the external circuit from the fuel cell stack is commenced such that the temperature of the membrane electrode assembly exceeds the freezing temperature of water.
摘要:
A fuel cell assembly within an electrochemical fuel cell stack has an anode layer and a cathode layer. A cooling layer is disposed adjacent the fuel cell assembly. Each layer comprises channels for directing a fluid stream from an inlet to a an outlet. The coolant stream channels extend such that, in operation, the coolest region of the cooling layer coincides with the region of the cathode layer having the highest concentration of oxygen (and/or the lowest water content), and the warmest region of the cooling layer coincides with the region of the cathode layer having the lowest concentration of oxygen (and/or the highest water content). The fuel stream channels extend such that, in operation, the fuel stream is directed to a region of the anode layer which coincides with the region of the cathode layer in which the oxidant stream has the lowest concentration of oxygen (and/or the highest water content) and is subsequently directed to a region of the anode layer which coincides with the region of the cathode layer in which the oxidant stream has the highest concentration of oxygen (and/or the lowest water content).
摘要:
A fuel cell assembly within an electrochemical fuel cell stack has a cooling jacket disposed adjacent the cathode layer. The cooling layer comprises a coolant stream inlet, a coolant stream outlet, and at least one channel for directing a coolant stream from the coolant stream inlet to the coolant stream outlet. The coolant stream channels extend such that the coolest region of the cooling layer substantially coincides with the region of the adjacent cathode layer having the highest concentration of oxygen (and also the lowest water content), and the warmest region of the cooling layer substantially coincides with the region of the adjacent cathode layer having the lowest concentration of oxygen (and also the highest water content).
摘要:
A load-following vaporizer converts an inlet liquid reactant stream to an outlet vapor reactant stream. The vaporizer comprises a containment shell, a nozzle and a fin block. The fin block has a base in thermal contact a heat source, preferably a thermal fluid stream. The base has a plurality of evaporative heat transfer structures that are spaced from and generally radiate from the nozzle outlet. Each of the evaporative heat transfer structures has two principal surfaces oriented such that the extension of each of the surfaces intersects the nozzle outlet. Upon contacting the evaporative heat transfer structures, the atomized liquid reactant dispersion is vaporized to produce a vaporized reactant stream. The vaporizer rapidly responds to changes in the inlet liquid reactant flow rate to produce a corresponding change in the output vapor flow rate by minimizes the liquid inventory within the heated environment. The load-following vaporizer is compact, lightweight and compatible with other components of an integrated fuel processing system.
摘要:
A compact modular isothermal reactor for converting a feedstock such as methanol into a fuel usable in power generation systems, such as electrochemical fuel cells, is provided. The reactor includes a sealing plate, a baffle plate having heat transfer surfaces extending toward the sealing plate, and a housing having an interior substantially circumscribing the heat transfer surfaces The cooperating surfaces of the sealing plate, baffle plate, heat transfer surfaces and housing interior define a labyrinthine channel for containing a suitable quantity of solid catalyst and through which feedstock flows. The cooperating surfaces of a fluid flow plate and the baffle plate define a flow passage for carrying a thermal fluid. Heat is transferred from the thermal fluid to the feedstock by the heat transfer surfaces. In two alternative designs, thermally conductive pins extending from the baffle plate or a pair of spaced folded thermally conductive plates transfer heat to the interior of a catalyst containment vessel. In an optional heat exchange section, the feedstock is preheated before being directed to the reactor.
摘要:
An improved method for embossing expanded graphite sheet material including removing at least a portion of the gas from within the material by exposing the material to a pressure less than atmospheric pressure, and then embossing the material.
摘要:
A portable fuel processing apparatus and enclosure including an enclosure having an outer wall that defines an interior space and provides a gas impermeable barrier. Attached to the enclosure is porting means for use in moving the enclosure from one location to another. A fuel reformer capable of providing sufficient hydrogen-rich reformate to a fuel cell stack for use in generating at least about 1 kW per hour is disposed within the enclosure. An optional gas detection system includes a sensor disposed within the enclosure to monitor the interior of the enclosure for presence of combustible gases. The portable apparatus can have a number of connectors for connecting the enclosure and the fuel processing systems to a source of a reformer fuel and water as well as a domestic drain. Preferred sources of fuel and water are common utility lines available in buildings. Additional connectors can be provided to couple the fuel processor with a fuel cell, for used in delivering a reformate stream, air stream and circulating cooling medium to a fuel cell and for returning a fuel cell exhaust stream to the enclosure. Moreover, the portable fuel processing apparatus and enclosure can further include connectors for establishing electronic communications with a remote process control unit. A method of installing the portable fuel processing apparatus is also provided.
摘要:
A method and apparatus for selectively oxidizing the carbon monoxide present in a mixture of gases, including hydrogen, to carbon dioxide is disclosed. Oxygen or an oxygen-containing gas mixture is introduced at locations along the latter portion of the reaction chamber in an isothermal reactor to selectively oxidize the carbon monoxide to carbon dioxide and to suppress the reverse water-shift reaction, which produces carbon monoxide and water from carbon dioxide and hydrogen.
摘要:
An electrochemical fuel cell stack has a first end plate, a second end plate, and fuel cell assemblies interposed therebetween. Each fuel cell assembly includes a membrane electrode assembly having at least one manifold header opening formed in the assembly for directing at least one of a fluid fuel stream, a fluid oxidant stream and a fluid coolant stream through the assembly. A tie rod extends within the opening and through each of the first and second end plates. Fastening means are disposed at opposite ends of the tie rod. Compressive means are interposed between at least one of the fastening means and at least one of the first and second end plates. In operation, the fastening means and the compressive means urge the first end plate toward the second end plate, thereby applying compressive force to the fuel cell assemblies.
摘要:
A method and apparatus for selectively oxidizing the carbon monoxide present in a mixture of gases, including hydrogen, to carbon dioxide is disclosed. Oxygen or an oxygen-containing gas mixture is introduced at locations along the latter portion of the reaction chamber in an isothermal reactor to selectively oxidize the carbon monoxide to carbon dioxide and to suppress the reverse to water-shift reaction, which produces carbon monoxide and water from carbon dioxide and hydrogen.