摘要:
A cellular communication system (100) comprises a first base station (103) which schedules resource for a user equipment (101). When receiving a resource allocation message, the user equipment (101) transmits a first message comprising a transmit indication to a plurality of base stations (103-109) wherein the transmit indication is indicative of a subsequent transmission of a second message. The user equipment (101) then proceeds to determine a transmit format for the second message; and to transmit the second message to the plurality of base stations (103-109) using the transmit format. When receiving the transmit indication, the plurality of base stations (103-109) proceed to configure their receivers to receive the second message. The first message may be transmitted in a control channel and the second message may be transmitted in a user data channel. The invention is particularly applicable to a High Speed Uplink Packet Access HSUPA service in a UMTS cellular communication system and may facilitate soft handover.
摘要:
The present invention relates to methods of operation of a communication device and to corresponding communication devices. In particular the invention relates to a first method of operation of a communication device, wherein some pilot bits associated with data bits are transmitted with a power at least partly dependent on the data rate at which the data bits are transmitted. At the base station, power control is carried out only on pilot bits with constant power, whereas channel estimation is carried out on all pilot bits. The invention also relates to a second method of operation of a communication device wherein all pilot bits associated with data bits are transmitted with one of a plurality of powers, at least partly dependent on the data rate at which the data bits are transmitted. At the base station a power control process compares the received signal with a plurality of thresholds, and sends a power control signal to the communication device based on the result of the comparison.
摘要:
A wireless communication system (100) and method for providing high speed uplink packet access from user equipment (128, 130) to a base station (114, 116, 118, 120). Each of the user equipment (128, 130) and the base station (114, 116, 118, 120) includes a transmitter (1106, 1206), a receiver (1104, 1204), and a controller (1108, 1208) coupled to the transmitter and the receiver. Data packets are transmitted from the user equipment (128, 130) to the base station (114, 116, 118, 120). Control information, corresponding to the data packets, is transmitted from the base station (114, 116, 118, 120) to the user equipment (128, 130). The control information includes an absolute grant channel indicator and/or channelization code(s) assigned to the user equipment (128, 130). The controller (1108) of the user equipment (128, 130) is configured to minimize a number of channelization code per scheduling active set cell to be monitored by the user equipment based on the absolute grant channel indicator and/or to utilize the channelization code(s) in response to handoff and/or entering an active channel state.
摘要:
Embodiments described herein address the desire to have a method for uplink rate control signaling that is able to achieve increased sector and user throughput with relatively high uplink spectrum efficiency. Rate control signaling embodiments are disclosed that use two common persistence values (404, 408) to update the allocated portion of RoT margin for each UE device, and thus, reduce the variation of the RoT. In addition, SHO information is used to control the inter-sector/cell interference and improve the sector throughput. In such embodiments, each UE determines (412) the data rate and time to transmit according to these common persistence values, SHO status and buffered data. Throughput comparable to that of time and rate schedulers, which require significantly more signaling and information, can be achieved by some of these embodiments while also exhibiting less sensitivity to delay, speed of the UE, and burstiness of the traffic.
摘要:
To address the need to convey ACK/NACK information in a manner that conserves system and signaling resources, embodiments of the present invention employ a Node-B transmitting on two types of ACK/NACK broadcast channels (501, 502), one type for received uplink data that was scheduled by the Node B and the other type of broadcast channel for received uplink data that was not scheduled by the Node B. Other embodiments of the invention employ a Node-B transmitting on two types of broadcast channels, one type of broadcast channel for received uplink data that comes from non-SHO users and another type of broadcast channel for received uplink data that comes from non-scheduled users or comes from scheduled SHO users. In addition, ACK/NACK information is scheduled (800) into the available broadcast channel time slots in accordance with a transmission priority that is determined by a scheduler.
摘要:
A method in a wireless communication network (100) wherein information is communicated in a frame structure wherein each frame includes multiple sub-frames, including grouping at least two wireless communication terminals in a group, assigning the group to less than all sub-frames constituting a communication frame, and assigning a radio resource assignment control channel of one or more assigned sub-frames to the group. The control channel is used to assign radio resources to one or more terminals of the group.
摘要:
During a random access communication opportunity (12), user equipment (20) utilizes either or both of an adaptive modulation and coding-based communication protocol (26) and an HARQ-based communication protocol (27) to achieve improved performance. This can avoid the need to establish dedicated channels (13) to support the required communications. In one embodiment, a plurality of adaptive modulation and coding-based communication protocols are provided with a given protocol being selected as a function of one or more governing criteria. For example, the protocol can be selected as a function of a quality condition of the communication path, as a function of a memory buffer, and so forth.
摘要:
During operation radio frames are divided into a plurality of subframes. Data is transmitted over the radio frames within a plurality of subframes, and having a frame duration selected from two or more possible frame durations.
摘要:
In a network, where a packet is to be transmitted on a channel to a communication device with a time offset between a shared control channel and a shared data channel, the packets can be ordered. A margin (301) can be determined (403) between a power need of a data channel of a packet and a total available transmit power (315) of the network infrastructure device. Scheduling packets (405) is responsive to the margin, and determines the next packet to be sent, where the control channel of the next packet has a power need less than the power margin. Resources are allocated (407) responsive to the margin to further determine the subsequent packet. The subsequent packet is transmitted (411) on the channel, wherein the data channel of the current packet and the control channel of the subsequent packet are at least partially contemporaneous.
摘要:
The present invention provides a method of scheduling asynchronous transmissions for a plurality of subscriber units. The method includes receiving information associated with a plurality of subscriber units that have uplink data to transmit, the information including uplink timing offset information associated with each of the subscriber units. Two or more subscriber units are then selected from a set of subscriber units having a timing offset differential, that is below a predetermined threshold, where the timing offset differential is the difference between the timing offset of a first subscriber unit and the timing offset of a second subscriber unit further selectively offset by a multiple of the transmission segment size, which minimizes the difference. The transmission segments, which are available for the uplink of data, are then allocated between the selected two or more subscriber units, which limits the number of transmission segments that have at least one of an overlap or a gap, and the amount of any overlap or gap, in order to minimize wasted scheduling opportunities.