Abstract:
Disclosed is a method for a femtocell to reduce interference with an overlapping macrocell. The femtocell determines soft-frequency-reuse (“SFR”) information of the macrocell. From that information, the femtocell determines which frequency sub-channels are assigned by the macrocell for its cell-center users and which frequency sub-channels are assigned for cell-edge users. (Cell-edge users are given a higher transmission power profile in order to overcome potential interference with neighboring macrocells.) Then, the femtocell selects from the cell-center user frequency sub-channels for transmission to the femtocell's users. By transmitting on the cell-center user frequency sub-channels, the femtocell reduces interference with the overlapping macrocell. The femtocell continues to update its knowledge of the macrocell's SFR information and re-assigns frequency sub-channels as the SFR changes. If the macrocell detects that one of its cell-center users is “close enough” to the femtocell, then the macrocell re-assigns the cell-center user as a cell-edge user to overcome interference.
Abstract:
Disclosed is a method for a femtocell to reduce interference with an overlapping macrocell. The femtocell determines soft-frequency-reuse (“SFR”) information of the macrocell. From that information, the femtocell determines which frequency sub-channels are assigned by the macrocell for its cell-center users and which frequency sub-channels are assigned for cell-edge users. (Cell-edge users are given a higher transmission power profile in order to overcome potential interference with neighboring macrocells.) Then, the femtocell selects from the cell-center user frequency sub-channels for transmission to the femtocell's users. By transmitting on the cell-center user frequency sub-channels, the femtocell reduces interference with the overlapping macrocell. The femtocell continues to update its knowledge of the macrocell's SFR information and re-assigns frequency sub-channels as the SFR changes. If the macrocell detects that one of its cell-center users is “close enough” to the femtocell, then the macrocell re-assigns the cell-center user as a cell-edge user to overcome interference.
Abstract:
Disclosed is a method for a femtocell to reduce interference with an overlapping macrocell. The femtocell determines soft-frequency-reuse (“SFR”) information of the macrocell. From that information, the femtocell determines which frequency sub-channels are assigned by the macrocell for its cell-center users and which frequency sub-channels are assigned for cell-edge users. (Cell-edge users are given a higher transmission power profile in order to overcome potential interference with neighboring macrocells.) Then, the femtocell selects from the cell-center user frequency sub-channels for transmission to the femtocell's users. By transmitting on the cell-center user frequency sub-channels, the femtocell reduces interference with the overlapping macrocell. The femtocell continues to update its knowledge of the macrocell's SFR information and re-assigns frequency sub-channels as the SFR changes. If the macrocell detects that one of its cell-center users is “close enough” to the femtocell, then the macrocell re-assigns the cell-center user as a cell-edge user to overcome interference.
Abstract:
Disclosed is a method for a femtocell to reduce interference with an overlapping macrocell. The femtocell determines soft-frequency-reuse (“SFR”) information of the macrocell. From that information, the femtocell determines which frequency sub-channels are assigned by the macrocell for its cell-center users and which frequency sub-channels are assigned for cell-edge users. (Cell-edge users are given a higher transmission power profile in order to overcome potential interference with neighboring macrocells.) Then, the femtocell selects from the cell-center user frequency sub-channels for transmission to the femtocell's users. By transmitting on the cell-center user frequency sub-channels, the femtocell reduces interference with the overlapping macrocell. The femtocell continues to update its knowledge of the macrocell's SFR information and re-assigns frequency sub-channels as the SFR changes. If the macrocell detects that one of its cell-center users is “close enough” to the femtocell, then the macrocell re-assigns the cell-center user as a cell-edge user to overcome interference.
Abstract:
Disclosed is a method for a femtocell to reduce interference with an overlapping macrocell. The femtocell determines soft-frequency-reuse (“SFR”) information of the macrocell. From that information, the femtocell determines which frequency sub-channels are assigned by the macrocell for its cell-center users and which frequency sub-channels are assigned for cell-edge users. (Cell-edge users are given a higher transmission power profile in order to overcome potential interference with neighboring macrocells.) Then, the femtocell selects from the cell-center user frequency sub-channels for transmission to the femtocell's users. By transmitting on the cell-center user frequency sub-channels, the femtocell reduces interference with the overlapping macrocell. The femtocell continues to update its knowledge of the macrocell's SFR information and re-assigns frequency sub-channels as the SFR changes. If the macrocell detects that one of its cell-center users is “close enough” to the femtocell, then the macrocell re-assigns the cell-center user as a cell-edge user to overcome interference.
Abstract:
Disclosed is a method for a femtocell to reduce interference with an overlapping macrocell. The femtocell determines soft-frequency-reuse (“SFR”) information of the macrocell. From that information, the femtocell determines which frequency sub-channels are assigned by the macrocell for its cell-center users and which frequency sub-channels are assigned for cell-edge users. (Cell-edge users are given a higher transmission power profile in order to overcome potential interference with neighboring macrocells.) Then, the femtocell selects from the cell-center user frequency sub-channels for transmission to the femtocell's users. By transmitting on the cell-center user frequency sub-channels, the femtocell reduces interference with the overlapping macrocell. The femtocell continues to update its knowledge of the macrocell's SFR information and re-assigns frequency sub-channels as the SFR changes. If the macrocell detects that one of its cell-center users is “close enough” to the femtocell, then the macrocell re-assigns the cell-center user as a cell-edge user to overcome interference.
Abstract:
A generator includes a first member, a second member and a sliding mechanism. The first member includes a first electrode and a first dielectric layer affixed to the first electrode. The first dielectric layer includes a first material that has a first rating on a triboelectric series. The second member includes a second material that has a second rating on the triboelectric series that is different from the first rating. The second member includes a second electrode. The second member is disposed adjacent to the first dielectric layer so that the first dielectric layer is disposed between the first electrode and the second electrode. The sliding mechanism is configured to cause relative movement between the first member and the second member, thereby generating an electric potential imbalance between the first electrode and the second electrode.
Abstract:
Electronic device assemblies and methods including an organic substrate based space transformer are described. One assembly includes a space transformer comprising an organic substrate. The assembly also includes a carrier on which the space transformer is positioned, and a clamp positioned to couple the space transformer to the carrier. The assembly also includes a probe array positioned on the space transformer, wherein the space transformer is positioned between the probe array and the carrier. The assembly also includes a printed circuit board, wherein the carrier is positioned between the printed circuit board and the space transformer. The assembly also includes electrical connections to electrically couple the space transformer to the printed circuit board. Other embodiments are described and claimed.
Abstract:
A generator includes a first member, a second member and a sliding mechanism. The first member includes a first electrode and a first dielectric layer affixed to the first electrode. The first dielectric layer includes a first material that has a first rating on a triboelectric series. The second member includes a second material that has a second rating on the triboelectric series that is different from the first rating. The second member includes a second electrode. The second member is disposed adjacent to the first dielectric layer so that the first dielectric layer is disposed between the first electrode and the second electrode. The sliding mechanism is configured to cause relative movement between the first member and the second member, thereby generating an electric potential imbalance between the first electrode and the second electrode.
Abstract:
The present invention discloses a transmission method and system for a Relay Physical Downlink Control Channel (R-PDCCH). The method comprises the steps of: an eNB bearing downlink grant information of a relay node onto an available Orthogonal Frequency Division Multiplex (OFDM) symbol of a first slot of a pre-allocated Physical Resource Block (PRB) pair used for bearing the R-PDCCH, wherein available OFDM symbols in the PRB pair, other than the OFDM symbol used for the downlink grant information, are used for bearing a Physical Downlink Shared Channel (PDSCH) of each relay node; the eNB transmitting the PRB pair bearing the downlink grant information and the PDSCH to the relay node. The present invention is well applicable to a link between an eNB and a relay node, and meanwhile enables backhaul resources to be used adequately.