摘要:
In one embodiment, an apparatus includes: a control circuit to receive a message authentication code (MAC) for an epoch comprising a plurality of flits; a calculation circuit to calculate a computed MAC for the epoch; a cryptographic circuit to receive the epoch via a link and decrypt the plurality of flits, prior to authentication of the epoch; and at least one memory to store messages of the decrypted plurality of flits, prior to the authentication of the epoch. Other embodiments are described and claimed.
摘要:
A processor includes an instruction decoder to receive a first instruction to process a secure hash algorithm 2 (SHA-2) hash algorithm, the first instruction having a first operand associated with a first storage location to store a SHA-2 state and a second operand associated with a second storage location to store a plurality of messages and round constants. The processor further includes an execution unit coupled to the instruction decoder to perform one or more iterations of the SHA-2 hash algorithm on the SHA-2 state specified by the first operand and the plurality of messages and round constants specified by the second operand, in response to the first instruction.
摘要:
According to one embodiment, a processor includes an instruction decoder to receive a first instruction to perform first SKEIN256 MIX-PERMUTE operations, the first instruction having a first operand associated with a first storage location to store a plurality of odd words, a second operand associated with a second storage location to store a plurality of even words, and a third operand. The processor further includes a first execution unit coupled to the instruction decoder, in response to the first instruction, to perform multiple rounds of the first SKEIN256 MIX-PERMUTE operations based on the odd words and even words using a first rotate value obtained from a third storage location indicated by the third operand, and to store new odd words in the first storage location indicated by the first operand.
摘要:
A multiply-and-accumulate (MAC) instruction allows efficient execution of unsigned integer multiplications. The MAC instruction indicates a first vector register as a first operand, a second vector register as a second operand, and a third vector register as a destination. The first vector register stores a first factor, and the second vector register stores a partial sum. The MAC instruction is executed to multiply the first factor with an implicit second factor to generate a product, and to add the partial sum to the product to generate a result. The first factor, the implicit second factor and the partial sum have a same data width and the product has twice the data width. The most significant half of the result is stored in the third vector register, and the least significant half of the result is stored in the second vector register.
摘要:
Vector instructions for performing ZUC stream cipher operations are received and executed by the execution circuitry of a processor. The execution circuitry receives a first vector instruction to perform an update to a liner feedback shift register (LFSR), and receives a second vector instruction to perform an update to a state of a finite state machine (FSM), where the FSM receives inputs from re-ordered bits of the LFSR. The execution circuitry executes the first vector instruction and the second vector instruction in a single-instruction multiple data (SIMD) pipeline.
摘要:
A processor includes a first execution unit to receive and execute a first instruction to process a first part of secure hash algorithm 256 (SHA256) message scheduling operations, the first instruction having a first operand associated with a first storage location to store a first set of message inputs and a second operand associated with a second storage location to store a second set of message inputs. The processor further includes a second execution unit to receive and execute a second instruction to process a second part of the SHA256 message scheduling operations, the second instruction having a third operand associated with a third storage location to store an intermediate result of the first part and a third set of message inputs and a fourth operand associated with a fourth storage location to store a fourth set of message inputs.
摘要:
According to one embodiment, a processor includes an instruction decoder to receive a first instruction to perform first SKEIN256 MIX-PERMUTE operations, the first instruction having a first operand associated with a first storage location to store a plurality of odd words, a second operand associated with a second storage location to store a plurality of even words, and a third operand. The processor further includes a first execution unit coupled to the instruction decoder, in response to the first instruction, to perform multiple rounds of the first SKEIN256 MIX-PERMUTE operations based on the odd words and even words using a first rotate value obtained from a third storage location indicated by the third operand, and to store new odd words in the first storage location indicated by the first operand.
摘要:
Technologies for executing a serial data processing algorithm on a single variable-length data buffer includes padding data segments of the buffer, streaming the data segments into a data register and executing the serial data processing algorithm on each of the segments in parallel.
摘要:
A method is described. The method includes iteratively performing for each position in a result matrix stored in a third register, multiplying a value at a matrix position stored in a first register with a value at a matrix position stored in a second register to obtain a first multiplicative value, where the positions in the first register and the second register are determined by the position in the result matrix and performing an exclusive or (XOR) operation with the first multiplicative value and a value stored at a result matrix position stored in the third register to obtain a result value.
摘要:
A processor includes a plurality of registers, an instruction decoder to receive an instruction to process a KECCAK state cube of data representing a KECCAK state of a KECCAK hash algorithm, to partition the KECCAK state cube into a plurality of subcubes, and to store the subcubes in the plurality of registers, respectively, and an execution unit coupled to the instruction decoder to perform the KECCAK hash algorithm on the plurality of subcubes respectively stored in the plurality of registers in a vector manner.