摘要:
A magneto-optical recording disk comprises a transparent substrate on which a magneto-optical recording layer made of a rare earth-transition metal alloy having an uniaxial magnetic anisotropy is sandwiched by a pair of dielectric layers is characterized that the dielectric layers are deposited in an amorphous state by means of a low pressure sputtering method.
摘要:
An optical recording disk includes a light transmissive substrate, a recording film disposed on the substrate directly or through an intermediate layer and a protection film disposed on the recording film. The protection film consists of a dielectric material and the entirety of an upper flat surface and a side surface of the recording film is integrally covered with the dielectric material protection film.
摘要:
An optical recording disk in which a transfer layer having grooves made of ultraviolet setting resin is laminated on the surface of a substrate, and in which a recording layer is laminated on the transfer layer, the optical recording disk comprises a peeling protrusion projectingly provided on the inner circumferential side of the transfer layer.
摘要:
A magneto optical disc, is provided with: a record layer to which information is recorded in a perpendicular magnetization condition; a switch layer, which perpendicular magnetic anisotropy is reduced at a room temperature and is increased at a temperature close to a predetermined reproduction temperature; and a reproduction layer opposed to the record layer through the switch layer to have a switched connection with the record layer by the switch layer.
摘要:
Disclosed is an image pickup device capable of greatly reducing delay in drive signals supplied to field emission devices, and cross-talk and the like that originate in these drive signals. The image pickup device comprises a photoelectric conversion film for receiving incident light on one side thereof; a field emission layer having an electron emitting surface apart from and facing the other side of the photoelectric conversion film, and including a plurality of electron emission devices; and a drive layer formed on a back side of the field emission layer and including a plurality of device drive circuits for supplying drive signals to each of back electrodes of the plurality of electron emission devices.
摘要:
An illuminating optical system for focusing a radiant light of a light source (1) onto a reflecting light valve (6) and a projection lens (7) for magnifying and projecting a reflected light from the reflecting light valve (6) onto a screen are provided, a diaphragm (31) is disposed at a substantially conjugate position of an entrance pupil of the projection lens (7) on an optical path of the illuminating optical system, the diaphragm (31) has an opening whose area is changed by a light-shielding member, and a shape of a shielded portion of the diaphragm (31) shielded by the light-shielding member is rotationally asymmetric to an optical axis (12) of the illuminating optical system. Accordingly, shielding of necessary light can be better avoided compared with a diaphragm for changing the light-shielding area in a rotationally symmetric manner, for example, a diaphragm for narrowing the opening concentrically, making it possible to improve contrast performance while minimizing brightness reduction.
摘要:
Provided is an optical recording medium whose surface is not easily injured, particularly an optical recording medium which is not required to be put into a cartridge. The optical recording medium comprises a recording layer, a covering layer comprising a polymer material, and a protective layer which are successively deposited, recording or reproducing wavelength for the medium being 420 nm or less, the numerical aperture of an optical system for the medium being 0.74 or more, and light being radiated to the side of the protective layer to read out data in the recording layer. In the medium, the protective layer has a hardness of 1000 kg/mm2 or more and a thickness of 4.66 &mgr;m or less.
摘要翻译:本发明提供一种表面不容易受伤的光记录介质,特别是不需要放入盒中的光记录介质。 光记录介质包括记录层,包含聚合物材料的覆盖层和连续沉积,记录或再现波长为420nm或更小的介质的保护层,介质的光学系统的数值孔径为 0.74以上,并且光被照射到保护层的一侧以读出记录层中的数据。 在该介质中,保护层的硬度为1000kg / mm 2以上,厚度为4.66μm以下。
摘要:
An electron emission device includes an electron-supply layer formed of metal or semiconductor; an insulator layer formed on the electron-supply layer; and a thin-film metal electrode formed on the insulator layer, whereby electrons are emitted when an electric field is applied between the electron-supply layer and the thin-film metal electrode. The insulator layer and the thin-film metal electrode have at least one island-like region where the thicknesses of the insulator layer and the thin-film metal electrode gradually decrease.
摘要:
An electron emission device exhibits a high electron emission efficiency. The device includes an electron supply layer of metal or semiconductor, an insulator layer formed on the electron supply layer, and a thin-film metal electrode formed on the insulator layer. The insulator layer is made of a dielectric substance and has a film thickness of 50 nm or greater. When an electric field is applied between the electron supply layer and the thin-film metal electrode, the electron emission device emits electrons.
摘要:
An electron emission device includes: a semiconductor layer; a porous semiconductor; and a thin-film metal electrode which are layered in turn. The electrode faces a vacuum space. The porous semiconductor layer has at least two or more of porosity-changed layers which have porosities which are different from each other in the thickness direction. The electron emission device emits electrons when an electric field is applied between the semiconductor layer and the thin-film metal electrode. An insulator layer made of a material selected from silicon oxide or silicon nitride may be formed between the porous semiconductor layer and the thin-film metal electrode. Si skeletons of the porous semiconductor layer are oxidized or nitrided.