摘要:
A fuel cell system includes a fuel cell, an operation controller and an air-conditioning mechanism. In response to a heating request for the air-conditioning mechanism during ordinary operation where the fuel cell is operated at an operating point on a current-voltage characteristic curve of the fuel cell, the operation controller compares a heat value-based required current value with an output-based required current value. When the output-based required current value is equal to or greater than the heat value-based required current value, the operation controller causes the fuel cell to be operated at an operating point on the current-voltage characteristic curve. When the output-based required current value is smaller than the heat value-based required current value, the operation controller controls the operating point of the fuel cell to an operating point of lower power generation efficiency than that of the operating point on the current-voltage characteristic curve.
摘要:
A fuel cell system includes a fuel cell, an operation controller and an air-conditioning mechanism. In response to a heating request for the air-conditioning mechanism during ordinary operation where the fuel cell is operated at an operating point on a current-voltage characteristic curve of the fuel cell, the operation controller compares a heat value-based required current value that is a current value of an operating point that is located on the current-voltage characteristic curve and satisfies a required heat value for the fuel cell with an output-based required current value that is a current value of an operating point that is located on the current-voltage characteristic curve and satisfies a required output for the fuel cell. When the output-based required current value is equal to or greater than the heat value-based required current value, the operation controller causes the fuel cell to be operated at an operating point on the current-voltage characteristic curve. When the output-based required current value is smaller than the heat value-based required current value, the operation controller controls the operating point of the fuel cell to an operating point of lower power generation efficiency than that of the operating point on the current-voltage characteristic curve.
摘要:
A fuel cell system includes: a fuel cell supplied with fuel gas for power generation; a fuel supply flow passage flowing fuel gas, supplied from a fuel supply source, to the fuel cell; a pressure regulating valve regulating a pressure of fuel gas flowing through the fuel supply flow passage; a fuel circulation flow passage returning gas, emitted from the fuel cell, to the fuel supply flow passage; a circulation pump delivering gas in the fuel circulation flow passage to the fuel supply flow passage; an emission valve emitting gas in the fuel circulation flow passage to an outside; and a control device controlling the pressure regulating valve, the circulation pump and the emission valve such that the sum of losses of crossover hydrogen, circulation pump power and purge hydrogen is minimum while a hydrogen stoichiometric ratio required for power generation of the fuel cell is ensured.
摘要:
A fuel cell system includes a fuel cell, a secondary battery, an oxidizing gas supplier, a gas supply flow regulator, an oxidizing gas supply path, a cathode off-gas exhaust path, a bypass flow path, a flow regulator, an available power output acquirer, and an operation controller, wherein the gas supply flow regulator regulates the gas supply flow rate to cause the oxidizing gas supplier to supply an excess gas flow rate, which is set to be greater than a target fuel gas-requiring gas flow rate, wherein the target fuel gas-requiring gas flow rate is the fuel cell-requiring gas flow rate to be supplied to the fuel cell in order to achieve the target current value, when the available power output is less than a minimum amount of electric power required for the oxidizing gas supplier to increase the gas supply flow rate from 0 to a preset gas flow rate within a preset time period, and the operation controller controls the flow regulator to make the bypass flow rate equal to a difference gas flow rate between the excess gas flow rate and the target fuel cell-requiring gas flow rate.
摘要:
An object is to suppress the degradation of durability due to a heat concentration while performing a rapid warm-up operation as necessary, when starting a fuel cell system at temperatures below freezing point. In order to achieve such an object, the present invention stores in a memory an operation termination condition of the last operation of the system, data such as the start-up temperature, or the remaining amount of product water at the time of the last scavenging; calculates the remaining amount of product water based on data read out from the memory at the time of starting the system to make judgments, from the remaining amount and the start-up temperature, on whether or not a rapid warm-up of the system is necessary and whether to start without circulating the cooling water when a rapid warm-up is necessary; and conducts, based on the judgment result provided by the judgment means, with or without circulating the cooling water, a low-efficiency power generation where a reactant gas to be supplied to the fuel cell is less than that in a normal power generation and an electronic power loss is larger than that in a normal power generation. The data includes, for example, an impedance, a temperature of the fuel cell and a scavenging air amount at the last termination of the operation of the fuel cell.
摘要:
An object is to suppress the degradation of durability due to a heat concentration while performing a rapid warm-up operation as necessary, when starting a fuel cell system at temperatures below freezing point. In order to achieve such an object, the present invention stores in a memory an operation termination condition of the last operation of the system, data such as the start-up temperature, or the remaining amount of product water at the time of the last scavenging; calculates the remaining amount of product water based on data read out from the memory at the time of starting the system to make judgments, from the remaining amount and the start-up temperature, on whether or not a rapid warm-up of the system is necessary and whether to start without circulating the cooling water when a rapid warm-up is necessary; and conducts, based on the judgment result provided by the judgment means, with or without circulating the cooling water, a low-efficiency power generation where a reactant gas to be supplied to the fuel cell is less than that in a normal power generation and an electronic power loss is larger than that in a normal power generation. The data includes, for example, an impedance, a temperature of the fuel cell and a scavenging air amount at the last termination of the operation of the fuel cell.
摘要:
A fuel cell system suppresses the deterioration of an electrolyte membrane of a fuel cell. The fuel cell system comprises: a temperature rise speed calculation unit for calculating a target temperature rise speed of the fuel cell using a temperature of the fuel cell and a water content of the fuel cell; and a drive control unit for controlling a drive of the cooling water pump using the temperature rise speed of the fuel cell and the target temperature rise speed calculated by the temperature rise speed calculation unit. The drive control unit controls the drive of the cooling water pump such that a circulation amount of the cooling water is decreased when the temperature rise speed of the fuel cell is below the target temperature rise speed and controls the drive of the cooling water pump such that the circulation amount of the cooling water is increased when the temperature rise speed of the fuel cell is equal to or greater than the target temperature rise speed.
摘要:
A fuel cell system suppresses the deterioration of an electrolyte membrane of a fuel cell. The fuel cell system comprises: a temperature rise speed calculation unit for calculating a target temperature rise speed of the fuel cell using a temperature of the fuel cell and a water content of the fuel cell; and a drive control unit for controlling a drive of the cooling water pump using the temperature rise speed of the fuel cell and the target temperature rise speed calculated by the temperature rise speed calculation unit. The drive control unit controls the drive of the cooling water pump such that a circulation amount of the cooling water is decreased when the temperature rise speed of the fuel cell is below the target temperature rise speed and controls the drive of the cooling water pump such that the circulation amount of the cooling water is increased when the temperature rise speed of the fuel cell is equal to or greater than the target temperature rise speed.
摘要:
There is disclosed a fuel cell system or the like capable of sufficiently reducing an exhaust hydrogen concentration even in a case where a fuel cell is operated in a state of a low power generation efficiency. A bypass valve is arranged between an oxidation gas supply path and a cathode-off gas channel. In a state in which supply of an oxidation gas to a cathode falls short, pumping hydrogen is included in a cathode-off gas. Therefore, a valve open degree of the bypass valve is regulated, and a flow rate of bypass air is regulated to control the exhaust hydrogen concentration.
摘要:
The invention is provided to reliably restore generated voltage that has declined due to clogging of water in a fuel cell stack. A method of operating a fuel cell system having a fuel cell stack that generates electricity through an electrochemical reaction between a fuel gas including hydrogen gas and an oxidation gas, wherein when a generated voltage of the fuel cell stack declines, the water-in-cell content of the fuel cell stack is adjusted so that a variation in cell pressure loss in the fuel cell stack decreases based on a characteristic curve of the water-in-cell content of the fuel cell stack and the cell pressure loss of the fuel cell stack.