Abstract:
An optical multiplexing/demultiplexing device comprise a plurality of propagation waveguides comprising an input waveguide capable of receiving input light and an output waveguide outputting light of a given wavelength among the wavelengths included in the input light and resonance waveguide that is an optical waveguide provided between adjoining waveguides and extends in a longitudinal direction in which both the adjoining waveguides extend, wherein the adjoining waveguides are an adjoining pair among the propagation waveguides. The distance between the resonance waveguide and each of the adjoining waveguides of the resonance waveguide and a length in the longitudinal direction of the resonance waveguide are set so as to form a transition part, wherein when a light comprising a transition wavelength set to the transition part passes through the transition part of one of the adjoining waveguides, the light of the transition wavelength component shifts to the other adjoining propagation waveguide.
Abstract:
A light emitting device capable of adjusting height difference between the light emitters and optical waveguides individually and easily with high accuracy is realized. The light emitting device comprises multiple light emitters; an optical multiplexer comprising the openings of multiple optical waveguides at the incidence end for light from the multiple light emitters and the opening of an optical waveguide combining said multiple optical waveguides at the light exit end; and multiple drivers driving said multiple light emitters, respectively, along the tilt direction of a surface tilted at a given angle with respect to the surface on which said optical waveguides are formed, wherein said light emitters are provided at an angle that makes the central axes of light from said light emitters in the light emission direction parallel to the surface on which said optical waveguides are formed.
Abstract:
An optical semiconductor device package includes a disc-shaped stem, metallic leads in rod form penetrating the stem in the direction of the thickness to protrude from a main surface of the stem, and a mount extending vertically from the main surface of the stem, with a plane part of the mount facing the leads. A dielectric substrate is mounted on the plane part, and an optical semiconductor chip is mounted thereon. Two impedance-adjusting dielectric substrates which are rectangular in plan view are provided extending in parallel with the leads, to cover the plane part facing the leads.
Abstract:
A control device accommodating unit (15) is provided in a section (50) accommodating an indoor air blower (7) adjacently to an indoor air flow-in port (16), and an impeller (7c) of the indoor air blower (7) is sequentially opposite to the indoor air flow-in port (16) and the control device accommodating unit (15) by rotation of the impeller (7c), and a space (51) is formed between the indoor air flow-in port (16) and the control device accommodating unit (15). In this configuration, it is possible to obtain a cooling device decreased in drop of air flow rate and drop of cooling performance due to mounting a control device (14).
Abstract:
A shutter device reduces resistance in an air passage while maintaining air-tightness, thus reducing a load to a fan and a motor. A shutter mount is provided between an intake port adapted to be connected with a side from which air enters and a discharging port adapted to be connected with a side from which air is discharged. A shutter frame is inserted into an inside of the shutter mount. A shutter for preventing outside air from entering from the discharging port is mounted to the shutter frame. The shutter mount has a rib thereof for sealing a gap produced between the shutter and the shutter mount when the shutter is closed. The rib has an inner diameter substantially equal to a diameter of the discharging port as seen from the discharging port
Abstract:
An optical semiconductor device package includes a disc-shaped stem, metallic leads in rod form penetrating the stem in the direction of the thickness to protrude from a main surface of the stem, and a mount extending vertically from the main surface of the stem, with a plane part of the mount facing the leads. A dielectric substrate is mounted on the plane part, and an optical semiconductor chip is mounted thereon. Two impedance-adjusting dielectric substrates which are rectangular in plan view are provided extending in parallel with the leads, to cover the plane part facing the leads.
Abstract:
A main body case containing therein an air blower for circulating ambient air and a heat exchanger for exchanging heat between the ambient air circulated by the air blower and inside air, flange provided in main body case and having wall surface joining surface joined to wall surface where main body case is arranged, and cover attached to flange, having a louver in a side of the inside air, and a plurality of opening holes in a side of the ambient air and covering the ambient air side of main body case, thereby making an attachment and a detachment of cover easy, and achieving a reduction of a maintenance work.
Abstract:
A control device accommodating unit (15) is provided in a section (50) accommodating an indoor air blower (7) adjacently to an indoor air flow-in port (16), and an impeller (7c) of the indoor air blower (7) is sequentially opposite to the indoor air flow-in port (16) and the control device accommodating unit (15) by rotation of the impeller (7c), and a space (51) is formed between the indoor air flow-in port (16) and the control device accommodating unit (15). In this configuration, it is possible to obtain a cooling device decreased in drop of air flow rate and drop of cooling performance due to mounting a control device (14).
Abstract:
An optical module comprises: a stem; a protruding portion on a surface of the stem; an optical semiconductor device mounted on the protruding portion; a power supply terminal penetrating through the stem, the power supply terminal being insulated from the stem; a first dielectric substrate mounted on the protruding portion; a first signal line on the first dielectric substrate and connected to a first end of the power supply terminal; a second dielectric substrate on a rear surface of the stem; and a second signal line on the second dielectric substrate and connected to a second end of the power supply terminal. The second signal line has an electrical length of 23.0-36.2 mm and an impedance of 21.5-24.5Ω.
Abstract:
A shutter device reduces resistance in an air passage while maintaining air-tightness, thus reducing a load to a fan and a motor. A shutter mount is provided between an intake port adapted to be connected with a side from which air enters and a discharging port adapted to be connected with a side from which air is discharged. A shutter frame is inserted into an inside of the shutter mount. A shutter for preventing outside air from entering from the discharging port is mounted to the shutter frame. The shutter mount has a rib thereof for sealing a gap produced between the shutter and the shutter mount when the shutter is closed. The rib has an inner diameter substantially equal to a diameter of the discharging port as seen from the discharging port.