摘要:
Parallelism in a processor is exploited to permute a data set based on bit reversal of indices associated with data points in the data set. Permuted data can be stored in a memory having entries arranged in banks, where entries in different banks can be accessed in parallel. A destination location in the memory for a particular data point from the data set is determined based on the bit-reversed index associated with that data point. The bit-reversed index can be further modified so that at least some of the destination locations determined by different parallel processes are in different banks, allowing multiple points of the bit-reversed data set to be written in parallel.
摘要:
A linear transform such as a Fast Fourier Transform (FFT) is performed on an input data set having a number of points using one or more arrays of concurrent threads that are capable of sharing data with each other. Each thread of one thread array reads two or more of the points, performs an appropriate “butterfly” calculation to generate two or more new points, then stores the new points in a memory location that is accessible to other threads of the array. Each thread determines which points it is to read based at least in part on a unique thread identifier assigned thereto. Multiple transform stages can be handled by a single thread array, or different levels can be handled by different thread arrays.
摘要:
One embodiment of the present invention sets forth a technique for coalescing memory barrier operations across multiple parallel threads. Memory barrier requests from a given parallel thread processing unit are coalesced to reduce the impact to the rest of the system. Additionally, memory barrier requests may specify a level of a set of threads with respect to which the memory transactions are committed. For example, a first type of memory barrier instruction may commit the memory transactions to a level of a set of cooperating threads that share an L1 (level one) cache. A second type of memory barrier instruction may commit the memory transactions to a level of a set of threads sharing a global memory. Finally, a third type of memory barrier instruction may commit the memory transactions to a system level of all threads sharing all system memories. The latency required to execute the memory barrier instruction varies based on the type of memory barrier instruction.
摘要:
A parallel thread processor executes thread groups belonging to multiple cooperative thread arrays (CTAs). At each cycle of the parallel thread processor, an instruction scheduler selects a thread group to be issued for execution during a subsequent cycle. The instruction scheduler selects a thread group to issue for execution by (i) identifying a pool of available thread groups, (ii) identifying a CTA that has the greatest seniority value, and (iii) selecting the thread group that has the greatest credit value from within the CTA with the greatest seniority value.
摘要:
One embodiment of an instruction decoder includes an instruction parser configured to process a first non-operative instruction and to generate a first event signal corresponding to the first non-operative instruction, and a first event multiplexer configured to receive the first event signal from the instruction parser, to select the first event signal from one or more event signals and to transmit the first event signal to an event logic block. The instruction decoder may be implemented in a multithreaded processing unit, such as a shader unit, and the occurrences of the first event signal may be tracked when one or more threads are executed within the processing unit. The resulting event signal count may provide a designer with a better understanding of the behavior of a program, such as a shader program, executed within the processing unit, thereby facilitating overall processing unit and program design.
摘要:
One embodiment of the present invention sets forth a technique for efficiently and flexibly performing coalesced memory accesses for a thread group. For each read application request that services a thread group, the core interface generates one pending request table (PRT) entry and one or more memory access requests. The core interface determines the number of memory access requests and the size of each memory access request based on the spread of the memory access addresses in the application request. Each memory access request specifies the particular threads that the memory access request services. The PRT entry tracks the number of pending memory access requests. As the memory interface completes each memory access request, the core interface uses information in the memory access request and the corresponding PRT entry to route the returned data. When all the memory access requests associated with a particular PRT entry are complete, the core interface satisfies the corresponding application request and frees the PRT entry.
摘要:
Parallel data processing systems and methods use cooperative thread arrays (CTAs), i.e., groups of multiple threads that concurrently execute the same program on an input data set to produce an output data set. Each thread in a CTA has a unique identifier (thread ID) that can be assigned at thread launch time and that controls various aspects of the thread's processing behavior, such as the portion of the input data set to be processed by each thread, the portion of the output data set to be produced by each thread, and/or sharing of intermediate results among threads. Where groups of threads are executed in SIMD parallelism, thread IDs for threads in the same SIMD group are generated and assigned in parallel, allowing different SIMD groups to be launched in rapid succession.
摘要:
Circuits, methods, and apparatus for using redundant circuitry on integrated circuits in order to increase manufacturing yields. One exemplary embodiment of the present invention provides a circuit configuration wherein functional circuit blocks in a group of circuit blocks are selected by multiplexers. Multiplexers at the input and output of the group of circuit blocks steer input and output signals to and from functional circuit blocks, avoiding circuit blocks found to be defective or nonfunctional. Multiple groups of these circuit blocks may be arranged in series and in parallel. Alternate multiplexer configurations may be used in order to provide a higher level of redundancy. Other embodiments use all functional circuit blocks and sort integrated circuits based on the level of functionality or performance. Other embodiments provide methods of testing integrated circuits having one or more of these circuit configurations.
摘要:
A graphics processing unit can queue a large number of texture requests to balance out the variability of texture requests without the need for a large texture request buffer. A dedicated texture request buffer queues the relatively small texture commands and parameters. Additionally, for each queued texture command, an associated set of texture arguments, which are typically much larger than the texture command, are stored in a general purpose register. The texture unit retrieves texture commands from the texture request buffer and then fetches the associated texture arguments from the appropriate general purpose register. The texture arguments may be stored in the general purpose register designated as the destination of the final texture value computed by the texture unit. Because the destination register must be allocated for the final texture value as texture commands are queued, storing the texture arguments in this register does not consume any additional registers.
摘要:
A Galois field arithmetic unit includes a Galois field multiplier section and a Galois field adder section. The Galois field multiplier section includes a plurality of Galois field multiplier arrays that perform a Galois field multiplication by multiplying, in accordance with a generating polynomial, a 1st operand and a 2nd operand. The bit size of the 1st and 2nd operands correspond to the bit size of a processor data path, where each of the Galois field multiplier arrays performs a portion of the Galois field multiplication by multiplying, in accordance with a corresponding portion of the generating polynomial, corresponding portions of the 1st and 2nd operands. The bit size of the corresponding portions of the 1st and 2nd operands corresponds to a symbol size of symbols of a coding scheme being implemented by the corresponding processor.