摘要:
The present application relates generally to paper-based magnesium batteries, and the manufacture and use thereof, such as in wearable or point of care devices.
摘要:
Synthesis and pharmaceutical compositions of antibody-functionalized nanovesicles encapsulating ion channel knockout siRNA, and methods of treating autoimmune diseases associated with increased expression and/or hyperactivity of T cells by selectively targeting memory T cells with the nanoparticles, which deliver their siRNA cargo into the cytosol of the TM cell thus reducing ion channel expression and decreasing Ca2+ influx.
摘要:
The present application relates generally to paper-based magnesium batteries, and the manufacture and use thereof, such as in wearable or point of care devices.
摘要:
Synthesis and pharmaceutical compositions of antibody-functionalized nanovesicles encapsulating ion channel knockout siRNA, and methods of treating autoimmune diseases associated with increased expression and/or hyperactivity of T cells by selectively targeting memory T cells with the nanoparticles, which deliver their siRNA cargo into the cytosol of the TM cell thus reducing ion channel expression and decreasing Ca2+ influx.
摘要:
Synthesis and pharmaceutical compositions of antibody-functionalized nanovesicles encapsulating ion channel knockout siRNA, and methods of treating autoimmune diseases associated with increased expression and/or hyperactivity of T cells by selectively targeting memory T cells with the nanoparticles, which deliver their siRNA cargo into the cytosol of the TM cell thus reducing ion channel expression and decreasing Ca2+ influx.
摘要:
Synthesis and pharmaceutical compositions of antibody-functionalized nanovesicles encapsulating ion channel knockout siRNA, and methods of treating autoimmune diseases associated with increased expression and/or hyperactivity of T cells by selectively targeting memory T cells with the nanoparticles, which deliver their siRNA cargo into the cytosol of the TM cell thus reducing ion channel expression and decreasing Ca2+ influx.
摘要:
The present subject matter relates generally to the derivatization of highly-aligned carbon nanotube sheet substrates with one or more transition metal centers and to uses of the resulting metal-derivatized CNT sheet substrates.