摘要:
An improved grating-outcoupled surface-emitting semiconductor laser architecture is provided. A second-order grating is placed between two distributed Bragg reflector gratings. The period of the second order grating is positively or negatively detuned from the distributed Bragg reflector selected optical wavelength at which the laser operates. Detuning of the second-order grating towards shorter or longer wavelengths allows kink-free, linear LI curves light output versus forward current) for grating-outcoupled surface-emitting lasers. Due to the detuning of the outcoupler grating, the outcoupled radiation emits two beams that deviate slightly from the normal axis. A design point may then be chosen where the power coutcoupled by symmetric and antisymmetric modes cross and where the outcoupled power is independent of the phase variation.
摘要:
A single-mode grating-outcoupled surface emitting (GSE) semiconductor laser architecture is provided. This architecture enables high speed modulation of the GSE laser, which is accomplished by only varying the relative phase of counter propagating waves in the outcoupler grating region of the lasing cavity.
摘要:
A single-mode grating-outcoupled surface emitting (GSE) semiconductor laser architecture is provided. This architecture enables high speed modulation of the GSE laser, which is accomplished by only varying the relative phase of counter propagating waves in the outcoupler grating region of the lasing cavity.
摘要:
An improved grating-outcoupled surface-emitting semiconductor laser architecture is provided. A second-order grating is placed between two distributed Bragg reflector gratings. The period of the second order grating is positively or negatively detuned from the distributed Bragg reflector selected optical wavelength at which the laser operates. Detuning of the second-order grating towards shorter or longer wavelengths allows kink-free, linear LI curves light output versus forward current) for grating-outcoupled surface-emitting lasers. Due to the detuning of the outcoupler grating, the outcoupled radiation emits two beams that deviate slightly from the normal axis. A design point may then be chosen where the power outcoupled by symmetric and antisymmetric modes cross and where the outcoupled power is independent of the phase variation.
摘要:
An imaging system (200) includes a plurality of laser sources (201) configured to produce a plurality of light beams (204). One or more optical alignment devices (220) orient the light beams (204) into a collimated light beam (205). A light modulator (203) modulates the collimated light beam (205) such that images (206) can be presented on a display surface (207). Speckle is reduced with an optical feedback device (221) that causes the laser sources (201) to operate in a coherence collapsed state. Examples of optical feedback devices (221) include partially reflective mirrors and beam splitter-mirror combinations.
摘要:
Briefly, in accordance with one or more embodiments, a beam scanner may comprise a nanophotonics chip to provide a scanned output beam. The nanophotonics chip comprises a substrate, a grating in-coupler formed in the substrate to couple a beam from a light source into the substrate, a modulator to modulate the beam, and a photonic crystal (PC) superprism to provide a scanned output beam that is scanned in response to the modulated beam.
摘要:
Briefly, in accordance with one or more embodiments, a beam scanner may comprise a nanophotonics chip to provide a scanned output beam. The nanophotonics chip comprises a substrate, a grating in-coupler formed in the substrate to couple a beam from a light source into the substrate, a modulator to modulate the beam, and a photonic crystal (PC) superprism to provide a scanned output beam that is scanned in response to the modulated beam.
摘要:
An imaging system (200) includes a plurality of laser sources (201) configured to produce a plurality of light beams (204). One or more optical alignment devices (220) orient the light beams (204) into a collimated light beam (205). A light modulator (203) modulates the collimated light beam (205) such that images (206) can be presented on a display surface (207). Speckle is reduced with an optical feedback device (221) that causes the laser sources (201) to operate in a coherence collapsed state. Examples of optical feedback devices (221) include partially reflective mirrors and beam splitter-mirror combinations.
摘要:
An imaging system (200) includes a plurality of laser sources (201) configured to produce a plurality of light beams (204). One or more optical alignment devices (220) orient the light beams (204) into a collimated light beam (205). A light modulator (203) modulates the collimated light beam (205) such that images (206) can be presented on a display surface (207). Speckle is reduced with an optical feedback device (221) that causes the laser sources (201) to operate in a coherence collapsed state. Examples of optical feedback devices (221) include partially reflective mirrors and beam splitter-mirror combinations.
摘要:
The wavelength of light output from a semiconductor laser varies over time as various parameters vary. Current in a phase section of the semiconductor laser is modified to counteract the wavelength variations. The current in the phase section may be modified in response to video data on a pixel-by-pixel basis or longer.