摘要:
A tunable bus-mediated coupling system is provided that includes a first input port coupled to a first end of a variable inductance coupling element through a first resonator and a second input port coupled to a second end of the variable inductance coupling element through a second resonator. The first input port is configured to be coupled to a first qubit, and the second output port is configured to be coupled to a second qubit. A controller is configured to control the inductance of the variable inductance coupling element between a low inductance state to provide strong coupling between the first qubit and the second qubit and a high inductance state to provide isolation between the first qubit and the second qubit.
摘要:
Real-time reconfigurability of quantum object connectivity can be provided with one or more quantum routers that can each be configured as either or both of a single-pole double-throw switch and a cross-point switch. The quantum router includes variable-inductance coupling elements in RF-SQUIDs having inductors transformer-coupled to two control flux lines, one providing a static current and the other providing a dynamic current, the direction of which can be toggled to couple or uncouple quantum objects, such as qubits, based on the dynamic current direction to provide reconfigurable quantum routing.
摘要:
Quantum systems are provided, including a qubit and a transmission line resonator having an associated resonant wavelength. A coupling capacitor is configured to capacitively couple the qubit to the transmission line resonator. A transformer is configured to inductively couple the qubit to the transmission line resonator. A selected one of an associated capacitance of the coupling capacitor and an associated mutual inductance of the transformer is a function of a location of the qubit along the transmission line resonator.
摘要:
A tunable bus-mediated coupling system is provided that includes a first input port coupled to a first end of a variable inductance coupling element through a first resonator and a second input port coupled to a second end of the variable inductance coupling element through a second resonator. The first input port is configured to be coupled to a first qubit, and the second output port is configured to be coupled to a second qubit. A controller is configured to control the inductance of the variable inductance coupling element between a low inductance state to provide strong coupling between the first qubit and the second qubit and a high inductance state to provide isolation between the first qubit and the second qubit.
摘要:
One example includes a parametric amplifier system. The system includes an input/output (I/O) transmission line to propagate a signal tone. The system also includes a non-linearity circuit comprising at least one Josephson junction to provide at least one inductive path of the signal tone in parallel with the at least one Josephson junction. The system further includes an impedance matching network coupled to the I/O transmission line to provide impedance matching of the tone signal between the I/O transmission line and the non-linearity element.
摘要:
One aspect of the present invention includes a reciprocal quantum logic (RQL) readout system. The system includes an input stage on which a read pulse is provided and an output stage configured to propagate an output pulse. The system also includes an RQL comparator comprising a first Josephson junction and a second Josephson junction that are coupled to a qubit. A bias current switches between a first Josephson junction in a first quantum state of the qubit and a second Josephson junction in a second quantum state of the qubit. The first Josephson junction triggers to provide the output pulse on the output stage in the first quantum state in response to the read pulse and the second Josephson junction triggers to provide no output pulse on the output stage in the second quantum state in response to the read pulse.
摘要:
A superconducting switch system is provided that includes a filter network having a first SQUID coupled to a second SQUID via a common node, an input port coupled to the common node, a first output port coupled to the first SQUID, and a second output port coupled to the second SQUID. The superconducting switch system also includes a switch controller configured to control an amount of induced current through the first SQUID and the second SQUID to alternately switch the first and second SQUIDS between first inductance states in which a desired bandwidth portion of a signal provided at the input terminal passes to the first output terminal and is blocked from passing to the second output terminal, and second inductance states in which the desired bandwidth portion of the input signal passes to the second output terminal and is blocked from passing to the first output terminal.
摘要:
One example includes a memory cell system. The memory cell system includes a quantizing loop configured to conduct a quantizing current in a first direction corresponding to storage of a first state of a stored memory state of the memory cell system and to conduct the quantizing current in a second direction opposite the first direction corresponding to storage of a second state of the stored memory state of the memory cell system. The memory cell system also includes a bias element arranged in the quantizing loop and which is configured to provide a substantially constant flux bias of the quantizing loop in each of the first and second states of the stored memory state.
摘要:
One embodiment describes a Josephson transmission line (JTL) system. The system includes a plurality of JTL stages that are arranged in series. The system also includes a clock transformer comprising a primary inductor configured to propagate an AC clock signal and a secondary inductor arranged in a series loop with at least two of the plurality of JTL stages. The clock transformer can be configured to propagate a single flux quantum (SFQ) pulse to set a respective one of the plurality of JTL stages in response to a first phase of the AC clock signal and to reset the respective one of the plurality of JTL stages in response to a second phase of the AC clock signal that is opposite the first phase.
摘要:
One aspect of the present invention includes a reciprocal quantum logic (RQL) readout system. The system includes an input stage on which a read pulse is provided and an output stage configured to propagate an output pulse. The system also includes an RQL comparator comprising a first Josephson junction and a second Josephson junction that are coupled to a qubit. A bias current switches between a first Josephson junction in a first quantum state of the qubit and a second Josephson junction in a second quantum state of the qubit. The first Josephson junction triggers to provide the output pulse on the output stage in the first quantum state in response to the read pulse and the second Josephson junction triggers to provide no output pulse on the output stage in the second quantum state in response to the read pulse.