Abstract:
A manufacturing method for an image pickup apparatus for endoscope includes forming a plurality of insertion holes in a first wafer and forming, in a second wafer, a plurality of through-holes including guide surfaces, bonding the first wafer and the second wafer to produce a bonded wafer, cutting the bonded wafer to thereby produce ferrules to which guide members are bonded, and mounting an optical element on each of the ferrules and fixing optical fibers with resin in a state in which the optical fibers are inserted into the insertion holes by passing through the guide members.
Abstract:
An image pickup apparatus includes: an image pickup device including a light receiving surface, an opposite surface, and an inclined surface inclined at a first angle, and provided with light receiving surface electrodes on the light receiving surface; a cover glass; and a wiring board including a first main surface and a second main surface, and including wires each connected with each of the light receiving surface electrodes, back surfaces of the light receiving surface electrodes are exposed to a side of the opposite surface, distal end portions of the wires are flying leads bent at a second angle in a relation of a supplementary angle to the first angle and connected with the light receiving surface electrodes, and the second main surface at a distal end portion of the wiring board is directly fixed to the opposite surface arranged in parallel with the second main surface.
Abstract:
An image pickup apparatus includes: an image pickup device chip that has junction terminals, which is connected with an image pickup unit, on a reverse surface; a cable having lead wires connected with the image pickup unit; and a wiring board that includes junction electrodes joined to the junction terminals, terminal electrodes connected with the lead wires, wirings that connect the junction electrodes formed at a central portion and the terminal electrodes formed at extending portions, and a heat transmission pattern formed in a region where the junction electrodes, the terminal electrodes and the wirings are not formed, the extending portions being bent and thereby the wiring board being arranged within a projected plane of the image pickup device chip.
Abstract:
A device-bonded body includes: a first device where a plated bump is disposed; a second device where a bonding electrode bonded to the plated bump is disposed; and a sealing layer made of NCF or NCP, the sealing layer being disposed between the first device and the second device and including filler particles made of inorganic material; wherein a surface of the plated bump includes a first area and a second area higher than the first area; and at least a part of a side surface of an outer circumferential portion of the second area intersects with a surface of the first area.
Abstract:
An image pickup apparatus includes: an image pickup device including a light receiving surface, an opposite surface, and an inclined surface, and provided with light receiving surface electrodes formed on the light receiving surface; cover glass joined so as to cover the light receiving surface; and a wiring board including second bond electrodes, wherein back surfaces of the light receiving surface electrodes being exposed to an opposite surface side, extended wiring patterns extended from the respective back surfaces of the light receiving surface electrodes through the inclined surface to the opposite surface, each of the extended wiring patterns including a first bond electrode, and the first bond electrode and the second bond electrode being bonded through a bump.
Abstract:
An image pickup module includes: a wiring board including a first main surface on which chip electrodes are disposed and a second main surface on which the cable electrodes connected respectively to the chip electrodes via respective through wirings are disposed; an image pickup device chip including external electrodes bonded respectively to the chip electrodes; and a cable including conductive wires bonded respectively to the cable electrodes, in which all of the cable electrodes are disposed in a region not facing a region where the chip electrodes are disposed.