Abstract:
A transmitter for generating a differential signal pair including a pre-emphasis component. In an embodiment, the transmitter comprises pre-driver circuitry including an input to receive a single-ended data signal. The differential transmitter further comprises a load circuit coupled between the input and a node coupled to an output of the pre-driver circuitry which corresponds to a constituent signal of the differential signal pair. In another embodiment, the load circuit is configurable to provide a signal path between the input and the node. A configuration of the load circuit allows for a type of pre-emphasis to be included in the constituent signal.
Abstract:
Techniques and methods for reducing or preventing latch up in row decoder circuits are disclosed herein. An example apparatus may include an array of pixels, a row address decoder, and control circuitry. The row decode circuit including a plurality of decode circuits, each including at least two transistors having respective body terminals coupled to a first node. The control circuitry including a body biasing circuit coupled to the first node, the body biasing circuit to adaptively provide a bias voltage to the first node in response to an operating state of the imaging system and/or a change in one of two reference voltages based on a control signal provided by a bias control circuit.
Abstract:
A transmitter circuit coupled to output image data from an image sensor includes a plurality of transmitters. The transmitters may include a plurality of drivers coupled to receive a data signal, and output a differential signal in response to receiving the data signal. A de-emphasis circuit is coupled between a first output of a first driver in the plurality of drivers, and a second output of a second driver in the plurality of drivers. The de-emphasis circuit is coupled to receive a de-emphasis control signal, and in response to receiving the de-emphasis control signal, the de-emphasis circuit reduces a magnitude of the differential signal.
Abstract:
An interface circuit includes a pre-driver that converts the single-ended signal to an intermediate differential signal having a first voltage swing responsive to a first supply voltage supplied to the pre-driver. An output driver is coupled to receive the intermediate differential signal from the pre-driver to convert the intermediate differential signal to an output differential signal coupled to be received by a load coupled to the output driver. The output differential signal has a second voltage swing responsive to a second supply voltage supplied to the output driver. An internal regulator is coupled to receive a variable supply voltage to supply the second voltage to the output driver. The second supply voltage is generated in response to a bias signal. A replica bias circuit is coupled to receive the variable supply voltage to generate the bias signal.
Abstract:
A transmitter for generating a differential signal pair including a pre-emphasis component. In an embodiment, the transmitter comprises pre-driver circuitry including an input to receive a single-ended data signal. The differential transmitter further comprises a load circuit coupled between the input and a node coupled to an output of the pre-driver circuitry which corresponds to a constituent signal of the differential signal pair. In another embodiment, the load circuit is configurable to provide a signal path between the input and the node. A configuration of the load circuit allows for a type of pre-emphasis to be included in the constituent signal.