Abstract:
A tool for digitizing a mechanical axis of a tibia using a computer-assisted surgery system is described. The tool includes upper and lower mounting ends interconnected by an alignment rod extending therebetween. The upper mounting end is releasably fastenable to an upper reference point on a tibial plateau and the lower mounting end includes a self-centering malleoli engaging mechanism having opposed caliper arms displaceable in a common plane relative to each other for clamping engagement with the medial and lateral malleoli of the ankle. At least one trackable member is mounted to the alignment rod of the tool and is in communication with the computer assisted surgery system for providing at least orientation information of the alignment rod. The mechanical axis of the tibia is parallel to the alignment rod and extends between the upper and lower reference points when the tool is mounted on the tibia.
Abstract:
A method for determining a mechanical axis of a tibia using a tibial digitizer is disclosed. The method includes: determining an upper reference point on a tibial plateau corresponding to an entry point of the mechanical axis; fastening an upper mounting end of the tibial digitizer to the tibial plateau at the upper reference point; and fastening a lower mounting end of the tibial digitizer to medial and lateral malleoli of the ankle, by inwardly displacing opposed caliper arms of a self-centering malleoli engaging mechanism toward each other in a common plane until the caliper arms abut the malleoli. A lower reference point located at a midpoint between the medial and lateral malleoli is then determined by identifying a corresponding midpoint between the caliper arms when they are clamped onto the medial and lateral malleoli.
Abstract:
A computer-assisted surgery (CAS) navigation assembly comprises a micro-electromechanical sensor (MEMS) navigation unit having one or more MEMS to provide at least orientation data. A support receives the MEMS navigation unit therein, the support being adapted to be mounted on the instrument in a fixed orientation relative to established navigated features of the instrument. At least two mating ball-in-socket features are disposed between the MEMS navigation unit and the support at opposed ends thereof for releasably engaging the MEMS navigation unit in precise orientational alignment within the receptacle, the at least two mating ball-in-socket features comprising catches aligned along an axis extending between the opposed ends, at least one of the catches being a biased catch. A method of connecting a MEMS navigation unit with a mating support fixed to a CAS instrument navigated by the CAS system is also provided.
Abstract:
A computer-assisted surgery system for guiding alterations to a bone, comprises a trackable member secured to the bone. The trackable member has a first inertial sensor unit producing orientation-based data. A positioning block is secured to the bone, and is adjustable once the positioning block is secured to the bone to be used to guide tools in altering the bone. The positioning block has a second inertial sensor unit producing orientation-based data. A processing system providing an orientation reference associating the bone to the trackable member comprises a signal interpreter for determining an orientation of the trackable member and of the positioning block. A parameter calculator calculates alteration parameters related to an actual orientation of the positioning block with respect to the bone.
Abstract:
A CAS system and method for guiding an operator in inserting a femoral implant in a femur as a function of a limb length and orientation of the femoral implant with respect to the femur, comprising a reference tool for the femur, a registration tool, a bone altering tool and a sensing apparatus. A controller is connected to the sensing apparatus to: i) register a frame of reference of the femur by calculating surface information provided by the registration tool as a function of the position and orientation of the registration tool provided by the sensing apparatus, and/or retrieving in a database a model of the femur; ii) calculate a desired implant position with respect to the frame of reference as a function of the limb length; and iii) calculate a current implant position and orientation in relation to the desired implant position with respect to alterations being performed in the femur with the bone altering tool, as a function of the position and orientation of the bone altering tool provided by the sensing apparatus and of a digital model of a femoral implant provided by the database. The database is connected to the controller for the controller to store and retrieve information relating to an operation of the controller. The computer-assisted system may be used to guide an operator in inserting a pelvic implant in an acetabulum as a function of an orientation of the pelvic implant with respect to the pelvis.
Abstract:
A computer-assisted surgery system for guiding alterations to a bone, comprises a trackable member secured to the bone. The trackable member has a first inertial sensor unit producing orientation-based data. A positioning block is secured to the bone, and is adjustable once the positioning block is secured to the bone to be used to guide tools in altering the bone. The positioning block has a second inertial sensor unit producing orientation-based data. A processing system providing an orientation reference associating the bone to the trackable member comprises a signal interpreter for determining an orientation of the trackable member and of the positioning block. A parameter calculator calculates alteration parameters related to an actual orientation of the positioning block with respect to the bone.
Abstract:
A method for assisting in positioning the acetabular cup comprises orienting a cup positioning instrument with a cup thereon in an initial reference orientation relative to an acetabulum of a pelvis with the cup forming a joint with the acetabulum, the cup positioning instrument comprising an inertial sensor unit with pre-planned orientation data for a desired cup orientation based on at least one landmark of the pelvis, The cup positioning instrument is rotated to a desired abduction angle as guided by an interface of the cup positioning instrument, based on movements relative to at least one landmark. The cup positioning instrument is rotated to a desired anteversion angle as guided by the interface of the cup positioning instrument, based on movements relative to the at least one landmark. Upon reaching the desired cup orientation as indicated by the interface, the cup is impacted into the acetabulum.
Abstract:
A computer-assisted surgery system for obtaining a distance between at least two fixed points relative to a bone comprises a first accelerometer unit located at a first fixed location on the bone, and producing first acceleration data during a movement of the bone. A second accelerometer unit is located at a second fixed location on the bone, and simultaneously producing second acceleration data during the movement. A gyroscope unit is fixed to the bone and simultaneously producing angular rates of change of said movement. A processor unit obtains the acceleration data and the angular rates of change for calculating the distance between the first fixed position and the second fixed position on the bone using a distance value of a distance vector between the accelerometer units. An interface outputs the distance between the first fixed position and the second fixed position relative to the bone. A method for calculating a distance between at least two points on a bone is provided.
Abstract:
A computer-assisted surgery (CAS) navigation assembly comprises a micro-electromechanical sensor (MEMS) navigation unit having one or more MEMS to provide at least orientation data. A support receives the MEMS navigation unit therein, the support being adapted to be mounted on the instrument in a fixed orientation relative to established navigated features of the instrument. At least two mating ball-in-socket features are disposed between the MEMS navigation unit and the support at opposed ends thereof for releasably engaging the MEMS navigation unit in precise orientational alignment within the receptacle, the at least two mating ball-in-socket features comprising catches aligned along an axis extending between the opposed ends, at least one of the catches being a biased catch. A method of connecting a MEMS navigation unit with a mating support fixed to a CAS instrument navigated by the CAS system is also provided.
Abstract:
An impactor for positioning and inserting an acetabular cup into an acetabulum of a pelvis during hip arthroplasty is described. The impactor includes a guide element mounted to an elongated body and including first and second openings aligned with each other to define an axial passage. The first and second openings and the axial passage receive a guide pin therethrough that is pinned in a fixed position to the pelvis. The guide element provides a mechanical orientation guide which restricts an angular orientation of the impactor relative to the guide pin when the guide pin is pinned in the fixed position relative to the pelvis and received through the first and second openings of the guide element. Centering the openings of the guide element relative to the guide pin in the fixed position accordingly achieves a desired orientation of the impactor within a predetermined angular tolerance.